
Independent Learning Approaches: Overcoming

Multi-Agent Learning Pathologies In Team-Games

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Gregory Palmer

December 2019

Contents

Preface xvii

Abstract xix

Acknowledgements xxi

1 Introduction 1

1.1 Learning in Multi-Agent Systems . 2

1.2 Motivation & Scope . 2

1.3 Problem Statement . 5

1.4 Research Questions . 6

1.5 Relation to Published Work . 7

2 Preliminaries 9

2.1 Reinforcement Learning . 9

2.2 Finite Markov Decision Processes . 10

2.3 Q-learning . 12

2.4 Exploration . 13

2.5 Deep Learning . 13

2.6 Deep Q-Learning . 14

2.7 Policy Gradient Methods . 15

2.8 Game Theory . 15

2.8.1 Strategic-Form Games . 16

2.8.2 Markov Games . 18

2.8.3 Partially Observable Markov Games 18

2.8.4 Repeated Games . 19

2.8.5 Incomplete Information and Bayesian Games 19

2.8.6 Monitoring Conditions in Repeated Games 20

2.8.7 Game Types . 20

2.8.8 Equilibrium Concepts . 21

2.9 Summary . 23

3 Multi-Agent Reinforcement Learning 25

3.1 Multi-Agent Learning Pathologies . 25

3.1.1 Miscoordination . 26

3.1.2 Relative Overgeneralization . 26

iii

3.1.3 Stochasticity of Rewards and Transitions 27

3.1.4 The Alter-Exploration Problem . 28

3.1.5 The Moving Target Problem . 29

3.1.6 Deception . 29

3.2 Independent Learning Approaches . 29

3.2.1 Decentralized Q-learning . 30

3.2.2 Distributed Q-learning . 30

3.2.3 Hysteretic Q-learning . 31

3.2.4 Frequency Maximum Q-value . 32

3.2.5 Recursive Frequency Maximum Q-value 33

3.2.6 Lenient Multi-Agent Reinforcement Learning 34

3.2.7 Comparison . 37

3.3 Multi-Agent Deep Reinforcement Learning 38

3.3.1 Facilitating Cooperation . 39

3.3.2 Enabling Communication . 43

3.3.3 Agents Modelling Agents . 44

3.3.4 Analysis of Emergent Behaviors . 45

3.3.5 Practical Challenges . 45

3.3.6 Limitations . 46

4 Evaluating Independent Reinforcement Learning 47

4.1 Desirable Traits of Independent Learners 48

4.2 n-Player Strategic-Form Games . 49

4.2.1 The Penalty Game . 49

4.2.2 The Climb Game . 50

4.2.3 The Partially Stochastic Climb Game 51

4.2.4 The Fully Stochastic Climb Game 52

4.3 Previous Findings . 53

4.4 Empirical Evaluation . 53

4.4.1 Decentralized Q-learning . 55

4.4.2 Frequency Maximum Q-value . 59

4.4.3 Recursive Frequency Maximum Q-value 63

4.4.4 Hysteretic Q-learning . 68

4.4.5 Lenient Multi-Agent Reinforcement Learning 73

4.5 Summary . 76

5 Towards Improved Lenient Learners 81

5.1 Algorithmic Definition . 82

5.2 Strategic-Form Game Evaluation . 83

5.3 Learning Complete Policies in Markov Games 88

5.4 Addressing Deception in Markov Games 92

5.4.1 The Relative Overgeneralization Game 92

5.4.2 The Gradient Game . 95

5.5 Summary . 98

6 Lenient Multi-Agent Deep Reinforcement Learning 101

6.1 Related Work . 103

iv

6.2 Independent Learner Baseline . 104

6.3 Lenient Deep Q-Learning . 105

6.3.1 Clustering Observations using Autoencoders 105

6.3.2 Combining Leniency with Deep Q-Network Architectures 106

6.3.3 Retroactive Temperature Decay Schedule 107

6.3.4 T (o)-Greedy Exploration . 108

6.4 Scheduled Hysteretic Deep Q-Learning . 108

6.5 Empirical Evaluation . 110

6.5.1 CMOTP Extensions . 110

6.5.2 Setup . 110

6.6 Deterministic CMOTP Results . 112

6.6.1 Original CMOTP . 112

6.6.2 Narrow Passage CMOTP . 113

6.7 Stochastic CMOTP Results . 114

6.8 Summary . 117

7 Q-learning with Negative Update Intervals 119

7.1 Q-learning with Negative Update Intervals 122

7.1.1 Negative Update Intervals . 123

7.1.2 Maintaining Negative Update Intervals 124

7.1.3 Strategic-Form Game Evaluation 124

7.1.4 Robustness Towards Noisy Transitions 126

7.2 Temporally-Extending Team Bimatrix Games 127

7.3 Deep Q-Learning with Negative Update Intervals 128

7.4 The Apprentice Firemen Game . 130

7.5 Empirical Evaluation . 131

7.5.1 Implementation Details . 131

7.5.2 Experiments . 133

7.5.3 Evaluation Using Phase Plots . 133

7.5.4 Learning Best Response Policies 134

7.5.5 Impact of Stochastic Transitions 138

7.5.6 Considerations Regarding LDDQNs 139

7.6 Future work . 140

7.7 Summary . 140

8 Conclusion 141

8.1 Contributions and Answers to the Research Questions 141

8.2 Summarising . 146

8.3 Limitations and Future Work . 146

A Strategic-Form Game Results 149

A.1 Frequency Maximum Q-value . 149

A.2 Recursive Frequency Maximum Q-value 152

A.3 Hysteretic Q-learning . 153

A.4 Lenient Multi-Agent Reinforcement Learning 159

A.5 Synchronized Distributed-Lenient Q-learning 161

v

A.6 Asynchronized Distributed-Lenient Q-learning 163

A.7 Q-learning with Negative Update Intervals 165

A.8 Results Summary . 171

B Apprentice Firemen Game Experiment Details & Evaluations 173

B.1 Hyperparameters . 173

B.2 Learning Best Response Policies . 173

B.3 LDDQN Variable Access Points Experiments 174

Bibliography 175

vi

Illustrations

List of Figures

2.1 Diagram depicting the agent-environment interaction of an idealized rein-

forcement learning agent. Upon executing an action ut at time t, the agent

receives state xt+1 and reward rt+1 responses at time t+ 1. This illustration

is adapted from Sutton and Barto [184]. 9

2.2 Two-player strategic-form game example, where players I and II are referred

to as row and column players respectively. The matrix cells contain the

reward that each player receives upon applying a joint-action. 17

2.3 Social Dilemmas: (a) Illustrates outcome variables R, P , S, and T , whose

inequalities can be used to determine if a general sum game is in-fact a social

dilemma [104, 112]; (b) The Prisoner’s Dilemma; (c) Chicken and (d) Stag

Hunt. Actions are to Cooperate or Defect. 22

3.1 Bimatrix game example with two Pareto optimal equilibria [209] 26

3.2 An illustration of a reward space for continuous actions where the relative

overgeneralization pathology is present. The x and y axis represent the

continuous actions for agents i and j, while the z axis illustrates the reward

for each joint-action 〈ai, aj〉. For agent i action M can lead to the optimal

reward, providing agent j chooses the correct response. However, due to

miscoordination being less severely punished for actions approaching N , the

agents are drawn towards a sub-optimal Nash equilibrium. This illustration

is taken from Wei and Luke [209]. 27

3.3 Two variations of a bimatrix game that confronts independent learners with

relative overgeneralization. For the deterministic variation (a) maximum

based learners will converge upon the optimal joint-action 〈A,A〉, by ignoring

the miscoordination penalties. For (b) joint-action 〈C,C〉 yields stochastic

rewards of 14 and 0 with 50% probability, towards which maximum based

learners are drawn. 28

4.1 The Penalty Game [33] . 50

4.2 The Climb Game [33] . 51

4.3 The Partially Stochastic Climb Game: The joint-action (B,B) yields stochas-

tic rewards of 14 and 0 with 50% probability [90]. 52

4.4 The Fully Stochastic Climb Game: Each joint-action yields stochastic re-

wards x/y, yielding rewards of x and y with 50% probability [90]. 52

4.5 The Penalty Game: Average Q-value comparison for decentralized Q-learning

agents for p = −10 and p = −100. For (a) and (b) we compute the averages

for runs that converged upon joint-policies 〈A,A〉 and 〈C,C〉 respectively. . . 55

vii

4.6 Mean reward comparison for p = {−10,−100} in the Penalty Game. (De-

centralized Q-learning) . 56

4.7 Percentages of correct runs for decentralized Q-learning within variations of

the penalty game using ε-Greedy exploration with stationary exploration rates. 56

4.8 Percentage of optimal joint-policies upon giving decentralized Q-learners a

supervised start within the four-player Penalty Game with penalty p = −100.

During the first iteration action ai = A for each agent i. 57

4.9 Correct run percentages for decentralized Q-learners within the two-agent

low-penalty Climb Game variations. We observe a higher convergence rate

for learners using low exploration rates ε and learning rates α. 58

4.10 Convergence rates for decentralized Q-learners using Boltzmann exploration

within the medium-penalty two-agent Penalty Game. 58

4.11 Decentralized Q-learning: Correct run percentages for two-agent low penalty

Climb Game variations using Boltzmann exploration. 59

4.12 Heat-maps illustrating the correct run percentages for independent learners

using FMQ within six variations of the Penalty Game. 60

4.13 The plots illustrate the interesting interdependence between FMQ hyperpa-

rameters. We observe a delayed convergence for FMQ learners implemented

with c = 10, s = 0.002 and MaxTemp = 500 when confronted with the

four-player Penalty Game with penalty p = −10. Sub-Figure (a) illustrates

how choosing a lower MaxTemp value increases the percentage of optimal

joint-policies for this particular FMQ configuration, whereas Sub-Figure (b)

illustrates that given more time, FMQ learners with MaxTemp = 500 will

eventually converge upon an optimal joint-policy. The plot also illustrates,

that due to the FMQ Boltzmann selection method the same setting requires

less time when the scale of the penalty value p is increased. 61

4.14 Q-values (averaged over 1,000 training runs) for FMQ in the four-player

Penalty Game. Illustrations are provided for runs that have either con-

verged upon the joint-actions 〈A,A,AA〉 or 〈C,C,C,C〉. The learners are

implemented with an EV weighting factor c = 10, and a temperature decay

moderator s = 0.002. 62

4.15 FMQ Boltzmann selection probabilities for the four-player Penalty Game.

The learners are implemented with an EV weighting factor c = 10, and a

temperature decay moderator s = 0.002. The selection probabilities (aver-

aged over 1,000 training runs) are illustrated for runs that converge upon

the joint-actions 〈A,A,A,A〉 or 〈C,C,C,C〉. Convergence requires fewer

iterations for larger penalty values p. 63

4.16 FMQ: Comparison of the percentage of runs that converge upon optimal

outcomes for two and four-agent versions of each Climb Game variation. . . 64

4.17 RFMQ: Correct run percentages for two-agent, low-penalty implementations

of the penalty game and the three variations of the Climb Game. 65

viii

4.18 RFMQ: Correct run percentages for the two-agent low-penalty Fully Stochas-

tic Climb Game using frequency learning rate αf = 0.05. 66

4.19 A comparison of Q-values, action evaluation values E(a) and the frequency

estimates F (a) averaged over 100 runs for RFMQ in the Fully-Stochastic

Climb Game. We compare the configuration used by Wei and Luke [209]

(Config1 = {α ← 0.03, αf ← 0.3, ε ← 0.1}), against the best configuration

encountered during our evaluation (Config2 = {α ← 0.1, αf ← 0.05, ε ←
0.03}). In Sub-Figures 4.19(e) and 4.19(f) we observe that the frequency

values deteriorate significantly faster for Config1. As a result action C has

the largest action evaluation value E (Sub-Figure 4.19(c)), which in turn

impacts the Q-values (Sub-Figure 4.19(a)). 67

4.20 Correct run percentages for RFMQ in the two-agent, medium-penalty deter-

ministic and partially stochastic Climb Games, and the Penalty Game. . . . 68

4.21 Correct run percentages for four-agent, low-penalty variations of each strate-

gic form game, when using αf = 0.01. 68

4.22 RFMQ Four-Agent Deterministic and Partially Stochastic Climb Game av-

erage Qmax for optimal and sub-optimal runs. We observe that for the

sub-optimal runs more steps are required to establish the Q-max for action B. 69

4.23 RFMQ Four-Agent Deterministic and Partially Stochastic Climb Game aver-

age Q-Values for optimal and sub-optimal runs. We observe that for optimal

runs approximately 40,000 iterations are required until Q(A) is larger than

Q(B). 70

4.24 Low-penalty two-agent Partially Stochastic Climb Game convergence rates

for hysteretic Q-learning using Boltzmann exploration 70

4.25 Results for the low-penalty two-agent Penalty Game plus the Deterministic

and Fully Stochastic Climb Game variations for hysteretic Q-learning using

Boltzmann exploration (MaxTemp = 500). 71

4.26 Repeated bimatrix game convergence rates for hysteretic Q-learning: medium-

penalty and MaxTemp = 500. 71

4.27 Repeated bimatrix game convergence rates for hysteretic Q-learning: high-

penalty and MaxTemp = 500. 72

4.28 Hysteretic Q-learning convergence rates for the four-agent Penalty Game

with high-penalty values. 72

4.29 An illustration of the impact of the moderation factor k on the leniency

function using MaxTemp = 50 and a temperature decay rate ν = 0.995. . . . 73

4.30 LMRL2 convergence rates within the two-agent low-penalty versions of the

Climb and Penalty Games. 74

4.31 Average Q-Values for LMRL2 within the low-penalty two-player Partially

and Fully Stochastic Climb Games (PSCG and FSCG respectively) using

temperature decay rates µ = {0.99, 0.995, 0.999}. 75

4.32 Performance of LMRL2 within the four-agent Penalty Game. 76

ix

4.33 LMRL2 Q-values within the two and four agent high-penalty Fully Stochastic

Climb Game. Due to the reward function we observe a larger separation

between Q-values for actions A and C for correct runs in the four agent

setting. 77

5.1 Convergence rates from ADLQ runs within the two-player low-penalty Climb

and Penalty Games. 85

5.2 Heat-maps illustrating the convergence rates of ADLQ within the six Fully

Stochastic Climb Game variations. 86

5.3 Average Q-value comparison for the two-player low-penalty Fully Stochastic

Climb Game. For SDLQ and ADLQ 100 runs were gathered. For ADLQ we

separate optimal and sub-optimal runs prior to plotting the Q-values. We

observe that for SDLQ Q(A) and Q(B) are closely aligned between episodes

2000 and 5000, before action A emerges with the highest Q-value. For ADLQ

the Q-value for action B is vulnerable towards instances of miscoordination.

Furthermore, while Q(C) remains unchanged for SDLQ following learning

phase 1, this is not the case for ADLQ. 87

5.4 Average leniency temperature value comparison within the two-player low-

penalty Fully Stochastic Climb Game. For both SDLQ and ADLQ 100

runs were gathered. For ADLQ we separate optimal and sub-optimal runs.

We observe that the temperature value for action C remains unchanged

for SDLQ. For optimal ADLQ runs meanwhile T (C) approaches 0 for sub-

optimal runs, while also being decayed during optimal runs. 87

5.5 Histograms illustrating the number of occurrences of joint-actions 〈A,B〉
and 〈B,A〉 during 100 SDLQ and ADLQ training runs conducted in the

low-penalty Fully Stochastic Climb Game. For both approaches miscoor-

dination occurs during Learning Phase 1 (the initial 500 iterations) where

random exploration is combined with maximum reward updates. During

Learning Phase 2 we initially observe a reduction in miscoordination due to

learners overestimating the utility of action B (see Figure 5.3). However,

upon learners applying less leniency towards updates involving B we ob-

serve frequent miscoordination for ADLQ. For SDLQ meanwhile we observe

no miscoordination occurrences during Learning Phase 2. 88

5.6 Running average reward comparison (window=1000 iterations) for the two-

player, low-penalty Fully Stochastic Climb Game. We compare SDLQ with

α = 0.1 against ADLQ with α = 0.001. We observe that due to ADLQ

using the lower learning rate there is a significant delay in convergence.

Furthermore, we observe a dip in the average reward due to miscoordination

frequently occurring between iterations 2000 and 5000. 89

5.7 Relative Overgeneralization 3 State Transition Diagram (Illustration is taken

from Wei and Luke [209]). 93

x

5.8 Correct run percentage for LMRL2 hyperparameter configurations within

RO3. We compare Q-value initialization and learning rate α. 93

5.9 Q-value comparison for RO3 State 1 using LMRL2 with Qinit = 0. 94

5.10 Q-value comparison for RO3 State 1 using LMRL2 with Qinit = 10. 95

5.11 Hyperparameter sweep for LMRL2, SDLQ and ADLQ within RO3. For

LMRL2 Q-values are initialized to 10. The learning rate α = 0.001. 95

5.12 State transition diagram for the Gradient 2 game (Illustration is taken from

Wei and Luke [209]). 96

5.13 Sub-Figure (a) illustrates instances of miscoordination (dark red) within 100

runs gathered for SDLQ within State 5 of Gradient 2. We observe that learn-

ers who end up with a sub-optimal joint-policy during the initial exploration

phase often fail to escape the miscoordination cycle. Sub-Figure (b) depicts

π1(5, A) and π2(5, B), the policy table entries for State 5 and actions A and

B for Agent 1 and Agent 2 respectively, from a failed SDLQ Gradient 2

run. We note that the line for Agent 1 is obscured by Agent 2 for the ma-

jority of the run, illustrating that the learners switch between sub-optimal

joint-action during identical time-steps. 98

5.14 SDLQ Q-values from Gradient 2 State 5 for actions A and B averaged over

59 and 41 correct and incorrect runs respectively. Note: the Q-values for

action A are obscured by B due to the Q-values being averaged over multiple

runs. For correct runs we observe that SDLQ is able to estimate the average

utility for coordinated actions involving actions A and B. For incorrect runs

meanwhile the Q-value for each action is significantly underestimated. 99

6.1 Lenient-DQN Architecture. We build on the standard DQN architecture [203]

by adding a lenient loss function (top right, see Section 6.3.2). Leniency

values are stored in the replay memory along with the state transitions;

we cluster semantically similar states using an autoencoder and SimHash

(bottom left), and apply our retroactive temperature decay schedule (TDS,

Algorithm 6). Actions are selected using the T (o)-Greedy exploration method.108

6.2 CMOTP Layouts . 110

6.3 Average temperature per compartment . 113

6.4 TMC and TDS schedules used during analysis. 115

6.5 Analysis of the LDDQN hyperparameters. The heat-maps show the percent-

age of runs that converged to the optimal joint-policy (darker is better). . . . 116

6.6 Noisy Stochastic CMOTP Average Reward 116

7.1 Example of a stochastic reward game where agents are confronted with rel-

ative overgeneralization. Each reward n/m is returned with equal probability.123

7.2 Average Q-values for Q-learning with NUI in the two-agent low-penalty

Climb Game (CG) and Partially Stochastic Climb Game (PSCG). 126

xi

7.3 Correct run percentage for LMRL2, Synchronized-DLQ and Q-learning with

NUI within two-player low-penalty Penalty Game and Climb Game varia-

tions, where the actions taken by learners are noisy after 10,000 episodes. . . 128

7.4 AFG layouts with fires (yellow), obstacles (grey) and equipment A (red),

B (green) & C (blue). Firemen are initially white, but following a pickup

adopt the equipment’s color. Civilians are also white (Not present in the

above images). 132

7.5 Terminal rewards for the Deterministic AFG. 132

7.6 Terminal rewards for the Partially Stochastic AFG. For 〈B,B〉 1.0 is yielded

on 60% of occasions. 133

7.7 Terminal rewards for the Fully Stochastic AFG. For 〈B,B〉 1.0 is yielded on

60% of occasions. 133

7.8 NUI-DDQN Pickup Q-values . 139

7.9 Running 〈A,A〉 % by LDDQNs dependent on fire Access Points. Agents

could overlap next to the fire for 1 Access Point. 139

A.1 Algorithm: FMQ, Game: The Penalty Game 149

A.2 Algorithm: FMQ, Game: The Climb Game 150

A.3 Algorithm: FMQ, Game: The Partially Stochastic Climb Game 150

A.4 Algorithm: FMQ, Game: The Fully Stochastic Climb Game 151

A.5 RFMQ results for the Penalty Game (PG), Climb Game (CG), Partially

Stochastic Climb Game (PSCG), and Fully Stochastic Climb Game (FSCG) 152

A.6 Algorithm: Hysteretic Q-learning, Game: The Penalty Game, Exploration:

Boltzmann, MaxTemp = 50 . 153

A.7 Algorithm: Hysteretic Q-learning, Game: The Penalty Game, Exploration:

Boltzmann, MaxTemp = 500 . 153

A.8 Algorithm: Hysteretic Q-learning, Game: The Penalty Game, Exploration:

Boltzmann, MaxTemp = 5000 . 154

A.9 Algorithm: Hysteretic Q-learning, Game: The Climb Game, Exploration:

Boltzmann, MaxTemp = 50 . 154

A.10 Algorithm: Hysteretic Q-learning, Game: The Climb Game, Exploration:

Boltzmann, MaxTemp = 500 . 155

A.11 Algorithm: Hysteretic Q-learning, Game: The Climb Game, Exploration:

Boltzmann, MaxTemp = 5000 . 155

A.12 Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic Climb

Game, Exploration: Boltzmann, MaxTemp = 50 156

A.13 Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic Climb

Game, Exploration: Boltzmann, MaxTemp = 500 156

A.14 Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic Climb

Game, Exploration: Boltzmann, MaxTemp = 5000 157

A.15 Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb Game,

Exploration: Boltzmann, MaxTemp = 50 . 157

xii

A.16 Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb Game,

Exploration: Boltzmann, MaxTemp = 500 158

A.17 Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb Game,

Exploration: Boltzmann, MaxTemp = 5000 158

A.18 Algorithm: LMRL2, Game: The Penalty Game 159

A.19 Algorithm: LMRL2, Game: The Climb Game 159

A.20 Algorithm: LMRL2, Game: The Partially Stochastic Climb Game 160

A.21 Algorithm: LMRL2, Game: The Fully Stochastic Climb Game 160

A.22 Algorithm: SDLQ, Game: The Penalty Game 161

A.23 Algorithm: SDLQ, Game: The Climb Game 161

A.24 Algorithm: SDLQ, Game: The Partially Stochastic Climb Game 162

A.25 Algorithm: SDLQ, Game: The Fully Stochastic Climb Game 162

A.26 Algorithm: ADLQ, Game: The Penalty Game 163

A.27 Algorithm: ADLQ, Game: The Climb Game 163

A.28 Algorithm: ADLQ, Game: The Partially Stochastic Climb Game 164

A.29 Algorithm: ADLQ, Game: The Fully Stochastic Climb Game 164

A.30 Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In Steps:

1000 . 165

A.31 Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In Steps:

500 . 165

A.32 Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In Steps:

100 . 166

A.33 Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In Steps:

1000 . 166

A.34 Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In Steps:

500 . 167

A.35 Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In Steps:

100 . 167

A.36 Algorithm: Q-learning with NUI, Game: The Partially Stochastic Climb

Game, Burn-In Steps: 1000 . 168

A.37 Algorithm: Q-learning with NUI, Game: The Partially Stochastic Climb

Game, Burn-In Steps: 500 . 168

A.38 Algorithm: Q-learning with NUI, Game: The Partially Stochastic Climb

Game, Burn-In Steps: 100 . 169

A.39 Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb Game,

Burn-In Steps: 1000 . 169

A.40 Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb Game,

Burn-In Steps: 500 . 170

A.41 Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb Game,

Burn-In Steps: 100 . 170

xiii

B.1 Phase plots illustrate delayed convergence of LDDQNs as a result of increas-

ing the number of possible state-action pairs. 174

List of Tables

2.1 Corresponding terminology for reinforcement learning and game theory. . . . 16

4.1 A summary of Wei and Luke’s [209] strategic-form game results, where de-

terministic, partially stochastic and fully stochastic rewards are abbreviated

to DET, PS and FS respectively. The authors verified the statistical signifi-

cance of the results using the Marasquilo procedure for χ2. A boldface was

used to denote algorithms that did not significantly outperform the other

highest performing approaches. *The authors provide a summary table for

both strategic form and Markov games, and therefore denote the RFMQ col-

umn as SOoN. However, RFMQ is the stateless version of SOoN, designed

for strategic form games. 53

4.2 Default hyperparameters used by Wei and Luke [209]. 54

4.3 Tuned hyperparameter configurations used by Wei and Luke [209]. 54

4.4 Strategic-Form Games Penalty Look-up Table. 55

4.5 Summary of the hyperparameters for hysteretic Q-learning that led to the

highest correct joint-policy percentages in the four-agent Climb Game vari-

ations. 73

5.1 Asynchronized DLQ (ADLQ) and Synchronized DLQ (SDLQ) complete and

correct run percentages in the Gradient 2 game. 97

6.1 Hyper-parameters . 111

6.2 Original CMOTP Results, including average steps per episode (SPE) over

the final 100 episodes, coordinated steps percentages (CSP) over the final

100 episodes, and the average steps per training run (SPR). 112

6.3 Narrow-Passage CMOTP Results, including average steps per episode (SPE)

over the final 100 episodes, coordinated steps percentages (CSP) over the

final 100 episodes, and the average steps per training run (SPR). 114

7.1 Apprentice Firemen Game Equipment . 131

7.2 Phase plots for runs conducted within Layout 1 (0 civilians), illustrating the

average shift in the action A distributions throughout the runs conducted,

using a rolling window of 1,000 episodes. The black squares and red dots

represent the initial and final distributions, while DET, PS and FS are abbre-

viations for deterministic, partially stochastic and fully stochastic rewards,

respectively. 135

xiv

7.3 Phase plots for runs conducted within Layout 2 (0 civilians), illustrating the

average shift in the action A distributions throughout the runs conducted,

using a rolling window of 1,000 episodes. The black squares and red dots

represent the initial and final distributions, while DET, PS and FS are abbre-

viations for deterministic, partially stochastic and fully stochastic rewards,

respectively. 136

7.4 Phase plots for runs conducted within Layout 2 wtih 10 civilians, illustrat-

ing the average shift in the action A distributions throughout the runs con-

ducted, using a rolling window of 1,000 episodes. The black squares and

red dots represent the initial and final distributions, while DET, PS and FS

are abbreviations for deterministic, partially stochastic and fully stochastic

rewards, respectively. 137

7.5 Scatter plots depicting the average coordinated rewards RC for HDDQNs

with β = 0.7 and β = 0.9. 138

A.1 Summary of the best results achieved using tuned hyperparameter config-

urations. Boldface indicates evaluation that resulted in the (joint) highest

convergence rate. For decentralized Q-learning we only conduct experiments

using the low-reward two-player games, with the exception of the Penalty

Game. This is due to decentralized Q-learning’s exhibiting low convergence

rates, even in the low-reward setting. For RFMQ we note that the results can

be improved by (significantly) increasing the number of training iterations,

as discussed in Section 4.4.3. 171

B.1 Hyper-parameters . 173

B.2 Scatter plots illustrating the average coordinated reward RC for each train-

ing run. The x-axis is sorted by RC values. 174

xv

Preface

This thesis is primarily my own work. The sources of other materials are identifed. This

work has not been submitted for any other degree or professional qualification except as

specified.

xvii

Abstract

Deep Neural Networks enable Reinforcement Learning (RL) agents to learn behaviour

policies directly from high-dimensional observations. As a result, the field of Deep Rein-

forcement Learning (DRL) has seen a great number of successes. Recently the sub-field

of Multi-Agent DRL (MADRL) has received an increased amount of attention. How-

ever, considerations are required when using RL in Multi-Agent Systems. Independent

Learners (ILs) for instance lack the convergence guarantees of many single-agent RL

approaches, even in domains that do not require a MADRL approach. Furthermore,

ILs must often overcome a number of learning pathologies to converge upon an optimal

joint-policy. Numerous IL approaches have been proposed to facilitate cooperation, in-

cluding hysteretic Q-learning [120] and leniency [148]. Recently LMRL2, a variation of

leniency, proved robust towards a number of pathologies in low-dimensional domains,

including miscoordination, relative overgeneralization, stochasticity, the alter-exploration

problem and the moving target problem [209]. In contrast, the majority of work on ILs

in MADRL focuses on an amplified moving target problem, caused by neural networks

being trained with potentially obsolete samples drawn from experience replay memories.

In this thesis we combine advances from research on ILs with DRL algorithms. How-

ever, first we evaluate the robustness of tabular approaches along each of the above

pathology dimensions. Upon identifying a number of weaknesses that prevent LMRL2

from consistently converging upon optimal joint-policies we propose a new version of

leniency, Distributed-Lenient Q-learning (DLQ). We find DLQ delivers state of the

art performances in strategic-form and Markov games from Multi-Agent Reinforcement

Learning literature. We subsequently scale leniency to MADRL, introducing Lenient

(Double) Deep Q-Network (LDDQN). We empirically evaluate LDDQN with extensions

of the Cooperative Multi-Agent Object Transportation Problem [26], finding that LD-

DQN outperforms hysteretic deep Q-learners in domains with multiple dropzones yield-

ing stochastic rewards. Finally, to evaluate deep ILs along each pathology dimension we

introduce a new MADRL environment: the Apprentice Firemen Game (AFG). We find

lenient and hysteretic approaches fail to consistently learn near optimal joint-policies in

the AFG. To address these pathologies we introduce Negative Update Intervals-DDQN

(NUI-DDQN), a MADRL algorithm which discards episodes yielding cumulative rewards

outside the range of expanding intervals. NUI-DDQN consistently gravitates towards

optimal joint-policies in deterministic and stochastic reward settings of the AFG, over-

coming the outlined pathologies.

xix

Acknowledgements

This thesis completes a journey that began just over six years ago, when I traded my

job as a security manager at an investment bank in Switzerland for a chance to study

the field of artificial intelligence at the University of Liverpool. I have grown a lot both

personally and professionally since making this decision. More importantly, Liverpool

has become a home for my family, in particular my two sons Payton and Michael, who

have both developed scouce accents.

It goes without saying that I would not have reached this point without receiving

support from a lot of people. Here is my attempt to give thanks to everyone who helped

me along the way. I apologize in advance for anyone whom I fail to mention.

First I have to thank my wife Nui. To provide sufficient context, we were expecting

our second child, Payton, following the completion of my BSc in Artificial Intelligence in

2016. We spent a significant amount of time considering the feasibility of me attempting

a PhD while supporting and raising a young family. In the end we concluded that we

would regret not attempting this path, and I am proud to say that together we have faced

and overcome every single challenge along the way. Nui, thank you for your patience

over the past three years. In particular during the weeks where I have been away on

trips and you have had to look after the kids by yourself, and the countless weekends

(and holidays) where I have been preoccupied with my research. You have sacrificed a

lot, and I just want to let you know that I really appreciate everything you have done

to support me.

Payton and Michael, thank you for constantly reminding your dad what is important

in life. My progress pales in comparison to your recent achievements. Watching the

two you learn to read, swim and master countless other activities has been a constant

source of inspiration. I fear that I have often been preoccupied and impatient due to my

attempts at balancing my research with demonstrating and other work related activities.

For this I apologize, and I will do my best to make it up to both of you. I also want

to thank my parents, Chris and Pat, and my nan, Joyce, for providing me with the

necessary tools and work ethic to embark on this journey.

I have been fortunate to have received a significant amount of support and input from

both my primary and secondary supervisors, Karl Tuyls and Rahul Savani. Both have

become my role models with regards to my research activities and also in everyday life.

Karl, thank you for introducing me to the world of multi-agent learning. For most of my

adult life I have been looking for a topic to immerse myself into, and you have provided

xxi

me with the opportunity, guidance and freedom to explore my research interests ever

since my final year undergraduate project. Rahul, thank you for looking out for me and

always being there when I needed you. I really appreciate all the opportunities that

you have provided, and thank you for taking a keen interest in my research activities

throughout my PhD. I also want to take this opportunity to thank Daan Bloembergen

for his guidance and support. I hope that I can continue to collaborate with the three

of you in the years to come.

Learning to be researcher and a parent have not been the only challenges that I

have faced throughout this experience. I am an introvert by nature, and if I am honest

the prospect of running tutorial sessions used to terrify me. I therefore want to take

this opportunity to thank Irina Biktasheva for essentially headhunting and forcing me

to provide tutorials for the department’s Biocomputation module. While I found this

prospect very daunting when you first approached me, I am very grateful that you

pushed me outside of my comfort zone, and allowed me to discover that I do in fact

enjoy teaching.

Since February this year I have also been working as a data scientist in our uni-

versity’s Geographical Data Science Lab (GDSL). Balancing writing up my PhD thesis

with my research activities for the GDSL has not always been an easy task, and I want

to thank Alex Singleton and Mark Green for all their support during the past months.

I also want to thank James Butterworth, Jacopo Castellini, Tom Spooner, Shan Luo,

Frans Oliehoek, Danushka Bollegala, Shayegan Omidshafiei, Harry Flore and Adriaan

Broer for valuable feedback and conversations throughout my PhD. Furthermore, I want

to thank the HAL Allergy Group for partially funding my PhD and gratefully acknowl-

edge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU

that enabled this research.

The past few years have included a number of highs and lows. A particular challenge

has been the recent passing of our colleague and friend Benjamin Schnieders. Benjamin,

I want to take this opportunity to thank you for being a part of my life. I learnt a lot

from you, and I wish I could have given you more in return. You had a positive influence

on not just me, but every member of the smARTLab, and you are missed very much;

not a day goes by without us thinking about you.

xxii

Chapter 1

Introduction

Intelligent autonomous agents and robots have the potential to reshape our society over

the coming decades. This prediction is based on recent success stories, where solutions

have been found for challenging virtual and real world problems, including: DeepMind’s

AlphaGo beating Go world champion Lee Sedol [168, 169], the coordination of aerial

vehicles [22, 27, 51, 150], and the emergence of self-driving cars [83, 118]. A significant

number of these successes can be attributed to breakthroughs in the field of deep learning,

enabling deep neural networks to learn solutions to problems that humans solve using

intuition [55, 56, 74, 95, 103, 119, 128].

Deep neural networks can be trained to extract compact features from complex high

dimensional input samples [55, 103, 133]. Their flexibility has led to breakthroughs in

numerous fields, including computer vision [55, 92, 103], language processing [34, 173,

220] and generative modeling [56, 65, 96, 158, 171]. Deep neural networks are also widely

used as function approximators in the field of reinforcement learning, enabling behaviour

policies to be learned using high-dimensional observations, thereby establishing the field

of deep reinforcement learning [71, 72, 105, 127–129, 202].

This thesis focuses on deep reinforcement learning within the context of multi-agent

systems, a type of distributed system inhabited by autonomous agents that are capable

of interacting with each other [5, 17, 137, 194, 195, 199, 200, 214]. Both static and

adaptive agents may inhabit multi-agent systems [88]. However, adaptive agents are

more desirable, as interactions can have unforeseen consequences, while the dynamics of

an environment can potentially change over time [5, 25, 138]. As we shall see, learning in

multi-agent systems is far from trivial, even within domains that do not require a deep

reinforcement learning approach. However, there are numerous applications where using

a centralized single-agent learning approach is infeasible, due to physically distributed

components, conflicting objectives, or a scarcity in resources [19, 137, 157, 174, 181].

Markets that can benefit from adaptive agents range from virtual environments to real-

world settings, including recycling robots [138, 183], sensor networks [15, 125, 138, 163,

164], decentralized network routing [137], smart cities [130], multi-robot coordination [3,

15, 32], collision avoidance [22, 31], traffic control [115, 116, 134, 137, 138], distributed

1

Chapter 1. Introduction 2

load-balancing [137], electronic auctions [137], trading [16, 76, 175], resource allocation

[10, 41, 42, 166], and computer games [46, 66].

1.1 Learning in Multi-Agent Systems

Agents situated within multi-agent systems frequently receive observations and a nu-

meric feedback signal while interacting with their environment [15, 25, 146, 197, 200].

Feedback signals can be sparse and are typically less informative than the labels required

by supervised learning [181, 184]. Furthermore, learners typically receive insufficient in-

formation to infer the intentions and goals of other agents within the system [195]. As

a result adaptive agents implemented with incentive based learning algorithms are fre-

quently applied to multi-agent systems, e.g., reinforcement learning or co-evolutionary

algorithms [38, 184]. Using the feedback signal, incentive based learners attempt to

maximize the rewards received through interacting with their environment [146, 184].

Reinforcement learning agents for instance learn via trial and error, using a scalar re-

ward (feedback) signal to estimate the expected utility for executing an action given an

observation [184]. However, despite a large number of reinforcement learning algorithms

having convergence guarantees in single-agent environments [25, 183], approaches such

as Q-learning are known to fail to converge upon optimal policies, even in relatively

simple multi-agent systems [17, 38, 66, 78, 90, 120, 145, 149, 157, 174, 181]. Multi-agent

learning literature meanwhile provides a rich taxonomy of pathologies that adaptive

agents must overcome in order to converge upon optimal policies. This has resulted in a

number of incentive based learning algorithms being extended to help agents overcome

the identified pathologies [17, 90, 120, 121, 145, 148, 209].

1.2 Motivation & Scope

The majority of the multi-agent reinforcement learning algorithms discussed in this thesis

have been designed to facilitate coordination among learning agents. The objective is

to enable two or more agents to reach a consensus regarding which joint actions to

perform [90]. Our focus is on fully cooperative team games with one global feedback

signal, where each agent receives an equal reward at each time step [121].

Typically two types of learning are studied in cooperative multi-agent systems: joint-

action learning (also known as team learning) and concurrent learning [146, 200]. In

joint-action learning one agent learns a policy for all agents within the system, whereas

concurrent learning consists of each agent learning a policy independently [47, 66, 146,

157, 174, 181, 200]. Traditional single-agent learning approaches can perform well when

applied to joint-action learning. However, this approach does not scale well, as increasing

the number of agents results in an exponential increase of the size of the observation-

action space [28, 38, 66, 78, 120, 157, 174, 181]. As a result maintaining utility values

for each observation-action combination received from all agents within the system can

Chapter 1. Introduction 3

become infeasible for a single-agent. A further criticism of joint-action learning is that

the number of real world domains where an entity can observe and control all agents

within the system is limited [122]. In many multi-agent systems information from other

agents is unavailable due to a physically distributed architecture or limitations with

regards to the agents’ ability to communicate with each other [8, 122, 174, 188]. Finally,

joint-action learners fail to consistently converge upon optimal joint policies, both in

traditional and high-dimensional settings [33, 146, 181]. This finding is disturbing, given

that agents have far less information in real world settings, where frequently the actions

taken by the other agents cannot be observed [90, 146].

In this thesis we focus on isolated concurrent learners, which are better known as

independent learners. Each independent learner is essentially implemented with a single-

agent reinforcement learning algorithm, and therefore other agents are treated as part

of the environment [15, 25, 200]. Despite being unable to observe the actions taken and

rewards received by other learners [33, 101], independent learners are considered more

scalable than joint-action learners [15, 28, 146, 157, 174]. However, the convergence

guarantees of most machine learning methods are based on the assumption that the

environment’s dynamics remain stationary [15, 25, 183, 200]. Introducing independent

learners to a system violates this assumption, and as a consequence each learning agent

must continuously adapt to the non-stationary policies of the other agents within the

system [38, 146, 200]. This particular pathology is known as the moving target problem

(non-stationarity problem), where small changes in the learned policies can have large

unpredictable consequences in the emergent behaviours of the independent learners col-

lectively [38, 146, 195, 200]. Other pathologies that can prevent independent learners

from converging upon an optimal joint-policy include 1:

• Miscoordination: This pathology occurs in domains where more than one op-

timal policy exists for each agent, however, only some combinations of these in-

dividual optimal policies are compatible across agents [33, 90, 122, 148]. To pro-

vide an example of miscoordination we shall consider a task with two robots A

and B, who must take turns passing through a narrow doorway. The robots can

choose between two actions: wait and move. Assuming each robot learns a policy

where an action is selected with 100% probability, we have two optimal policies:

〈A(wait), B(move)〉 and 〈A(move), B(wait)〉. However, joint-policies using the re-

maining action combinations will lead to miscoordination, 〈A(wait), B(wait)〉 and

〈A(move), B(move)〉, where neither robot can reach the other side of the door.

• The stochasticity problem: Reinforcement learners are often situated in do-

mains that yield stochastic rewards (e.g., pulling a lever on a one-armed bandit

which yields a reward chosen from a stationary probability distribution [4, 184])

and non-deterministic transitions (e.g. walking on a slippery surface [61]).

1We provide formal definitions for each pathology in Chapter 3, Section 3.1.

Chapter 1. Introduction 4

• The alter-exploration problem: Managing the exploration-exploitation trade-

off is one of the keys to reinforcement learning’s success [184]. However, exploration

adds noise to the utility value estimates maintained by independent learners, who

must take into account the probability of at least one agent exploring at each

time-step [121].

• Relative overgeneralization: Independent learners can be drawn towards sub-

optimal wide peaks in the reward search space due to a greater likelihood of

achieving collaboration there. Relative overgeneralization occurs when pairing an

independent learner’s available actions with arbitrary actions by the other agents

results in a sub-optimal action having the highest utility estimate [210].

• Deception: Independent learners can be deceived by states yielding a high local

reward, that ultimately lead on to poor future rewards (also known as the delayed

reward problem) [209]. As a result greedy agents can be led astray from high-value

trajectories.

A significant number of independent learning algorithms have been proposed in

multi-agent reinforcement learning literature to mitigate the above pathologies [15, 17,

28, 90, 120, 148, 148, 149, 157, 174, 209, 210]. Many of these algorithms are inspired

by human coping mechanisms [90]. For instance, despite having a common objective,

cooperative learning agents are not guaranteed to converge upon an optimal joint pol-

icy, especially when confronted with a reward space where miscoordination is associated

with high penalty values [90]. Humans can be observed to adopt an optimistic dispo-

sition towards each-other when attempting to solve a problem with a high likelihood

of miscoordination. As per behavioral game theory [43], football players for instance

repeatedly attempt challenging passes when awarded a free-kick outside the opponent’s

penalty area. Despite safe passing options being available, that will allow the team to

maintain possession, the free-kick taker remains optimistic that the risky pass could

catch the defense off-guard and lead to a goal. Inspired by this concept numerous opti-

mistic approaches have been applied to incentive based learning. Prominent examples

frequently discussed in multi-agent reinforcement learning literature include distributed

Q-learning [100], hysteretic Q-learning [120, 141] and leniency [17, 148, 149, 197].

However, despite these efforts none of the above approaches can completely address

the outlined pathologies, even in relatively simple stateless games with a small discrete

action space [17, 28, 33, 90, 148, 148, 149]. Furthermore, current approaches towards

independent learning within high-dimensional domains with a large state-space can am-

plify multi-agent learning pathologies [46, 66]. For example: the architectures used in

deep reinforcement learning are trained using stochastic gradient descent [128, 129].

However, gradient based methods are likely to fail when trained via strongly correlated

updates that break the independent and identically distributed (i.i.d.) data assump-

tion [160]. To break the temporal correlation between sequences of encountered states

Mnih et al. [128, 129] turn to experience replay memories that store state-transition

Chapter 1. Introduction 5

tuples as the agent explores the environment [106]. However, the use of experience re-

play memories amplifies the moving target problem in multi-agent deep reinforcement

learning, due to each agent’s network being trained using potentially obsolete samples

that may no longer reflect the current dynamics of the environment. In this thesis we

empirically and algorithmically evaluate to what extent leniency [17, 145, 148] and other

optimistic extensions can help deep reinforcement learning agents overcome multi-agent

learning pathologies and converge upon an optimal joint-policy in fully-cooperative set-

tings.

1.3 Problem Statement

In the previous section we observe that independent learning remains an open problem.

Recently Wei and Luke [209] conducted an evaluation of state of the art independent

learning algorithms. A variation of leniency called Lenient Multi-agent Reinforcement

Learning 2 (LRML2) emerged as the most robust algorithm. However, none of the

approaches evaluated can consistently overcome a combination of relative overgeneral-

ization and the stochasticity problem. While LMRL2 is less susceptible towards these

pathologies, a significant number of LMRL2 runs failed to converge upon optimal joint-

policies when confronted with excessive stochasticity. This finding is worrying, especially

given that the authors’ evaluation was conducted using two-player games that were ei-

ther stateless, or only consisted of a small number of low-dimensional states. Questions

remain whether LMRL2 struggles with the above pathologies are due to a sub-optimal

choice of hyperparameters and Q-value initialization, or if further algorithmic modifica-

tion are necessary to improve the robustness of lenient learners.

A further open question is the scalability of independent learning approaches that

do achieve high convergence rates upon optimal joint-policies within low-dimensional

settings to domains with a large high-dimensional state-space. While scalability is a

challenge for most machine learning techniques, this is particularly the case for multi-

agent learning [25]. Panait and Luke [146] observe that many traditional methods are

likely to fail once applied to partially observable environments inhabited by a large num-

ber of agents. Furthermore, scaling frequently requires algorithmic modifications [121].

For example: a number of independent learning algorithms rely on count based methods,

where learners keep track of the number of times an action has been executed within a

given state [17, 90, 121, 148, 149, 190, 197]. Lenient learners for instance map a decaying

temperature value to each state-action pair, which determines the amount of leniency

that is applied towards a utility value update [17, 145, 148]. The temperature value

mapped to the state-action pair is decayed following a utility value update, resulting in

lenient learners applying less leniency towards utility value updates for frequently visited

state-action pairs. In low dimensional settings temperature values can be maintained in

a discrete low-dimensional data structure. However, further considerations are required

Chapter 1. Introduction 6

for maintaining temperature values for semantically similar state actions pairs within a

high-dimensional state-space.

For independent learning algorithms that have been scaled to multi-agent deep re-

inforcement learning, considerations are required regarding evaluation [78]. Temporally

extended high-dimensional domains are required where the learners’ susceptibility to

multi-agent learning pathologies can be established. However, while multi-agent rein-

forcement learning literature provides numerous repeated stateless and low-dimensional

games to determine an algorithm’s robustness towards specific pathologies, equivalent

domains are lacking for multi-agent deep reinforcement learning. We therefore consider

that multi-agent deep reinforcement learning can benefit from domains where indepen-

dent learners’ susceptibility towards each of the above pathology dimensions can be

established.

1.4 Research Questions

Below are five research questions that have been distilled from the problem statement

outlined in the previous section.

Q1: To what extent can existing independent learning approaches mitigate multi-agent

learning pathologies within n-player repeated single-stage strategic-form games?

Chapter 4 & 5

Q2: To what extent can synchronized lenient learners reduce miscoordination?

Chapters 5 & 7

Q3: To what extent can we design high-dimensional domains for evaluating the suscep-

tibility of deep reinforcement learners towards multi-agent learning pathologies?

Chapters 6 & 7

Q4: To what extent can leniency be scaled to multi-agent deep reinforcement learning?

Chapter 6

Q5: To what extent can independent learners overcome relative overgeneralization

while making decisions using noisy utility values backed up from stochastic follow-

on transitions?

Chapter 7

The chapter(s) within which each of these questions is addressed is provided in italics

at the end of each question. Concrete answers are subsequently provided to each question

in Chapter 8.

Chapter 1. Introduction 7

1.5 Relation to Published Work

The background knowledge presented in Chapters 2 and 3 is based on the work of

other authors, where we cite relevant sources from literature. In Chapters 4 and 5 we

present our most recent work, which is in preparation for a submission to the Journal of

Machine Learning Research. In Chapter 4 we re-evaluate existing independent learner

baselines within n-player repeated single-stage strategic-form games, while in Chapter 5

we introduce a novel leniency algorithm. Finally, Chapters 6 and 7 are based on two

(full) conference publications, respectively:

• Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani, Lenient Multi-

Agent Deep Reinforcement Learning, In Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems, 2018, pp. 443–451.

• Gregory Palmer, Rahul Savani, and Karl Tuyls, Negative Update Intervals in Deep

Multi-Agent Reinforcement Learning, In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems, 2019, pp. 43–51.

Other Research: Not all research conducted over the past three years fits into the

scope of this thesis. Other efforts include a collaboration with the HAL Allergy Group on

the automated inspection of opaque liquid vaccines and work conducted with Benjamin

Schnieders, Shan Luo and my supervisor Karl Tuyls on the topic of one-shot object

segmentation for industrial robotics:

• Benjamin Schnieders, Shan Luo, Gregory Palmer, and Karl Tuyls, Fully Convolu-

tional One-Shot Object Segmentation for Industrial Robotics. In Proceedings of

the 18th International Conference on Autonomous Agents and MultiAgent Sys-

tems, 2019, pp. 1161-1169.

Chapter 2

Preliminaries

This chapter outlines the core concepts that serve as the foundations of the contributions

presented in this thesis. First an introduction to reinforcement learning is provided,

followed by a summary of the breakthroughs that enabled the field of deep reinforcement

learning [105, 127–129, 203]. Finally, we discuss concepts from game theory that have

been used to describe and evaluate multi-agent learning [19, 33, 90, 120–122, 137, 167,

178, 194, 194, 200, 209].

2.1 Reinforcement Learning

Learning through trail-and-error via interaction with an environment is a concept that

underlies the majority of theories on learning and intelligence [19, 33, 122, 184, 194,

200, 200, 207]. Reinforcement learning is a branch of machine learning based on this

concept [184, 194, 200, 207], where idealized learners learn through trial and error

while interacting with a dynamic environment [87, 122, 133, 137, 184, 200, 200, 207].

The learners can perceive the environment’s current state, perform actions and observe

their impact on the environment through a numeric reward signal (as depicted in Fig-

ure 2.1) [15, 88, 184, 200]. Inspired by the pleasure and pain signals observed in biological

systems, a reward signal defines the desirability of the transition that take place within

the environment, and can be seen as a stochastic function that maps state-action pairs

to rewards [184, 194].

Figure 2.1: Diagram depicting the agent-environment interaction of an idealized
reinforcement learning agent. Upon executing an action ut at time t, the agent
receives state xt+1 and reward rt+1 responses at time t+ 1. This illustration is

adapted from Sutton and Barto [184].

9

Chapter 2. Preliminaries 10

Interactions with the environment produce large amounts of information regarding

the consequences of actions [184, 207]. The objective of reinforcement learning agents

is to utilize this information to maximize the total reward received while interacting

with the environment [15, 87, 184, 194, 200]. Actions resulting in desirable transitions

are to be reinforced, i.e., executed with a greater likelihood in the future [19, 184].

However, rewards may be stochastic, delayed or accumulated over a trajectory of state-

transitions [19, 184, 208]. As a result action or value functions are used to estimate

the long term rewards that an agent can expect to receive starting from the current

state [184, 207]. Such functions account for the rewards received during follow-on states,

while the reward signal only indicates the immediate reward. Therefore, while the imme-

diate reward might appear less desirable, action and value functions can help determine

long term benefits. The notion of expected utility can be used to guide the agents

towards actions that lead to states with higher rewards [15, 122, 137, 184, 197].

Machine learning algorithms are typically said to belong to one of two groups: (i) su-

pervised learning, where models are trained using labelled data; (ii) unsupervised learn-

ing, where algorithms are designed to find hidden structures in unlabelled data. However,

Sutton and Barto [184] argue that reinforcement learning is in fact a third paradigm,

which can be distinguished from supervised and unsupervised learning problems, as the

agents: (i) are situated in a closed loop (see Figure 2.1); (ii) do not receive any labelled

information regarding the desirability of actions; (iii) learn from reward signals received

over multiple time steps.

A further distinction between reinforcement learning and other machine learning

paradigms, is that a carefully considered trade-off is required between exploration and

exploitation in order to discover preferable states and actions [15, 87, 88, 184, 194,

200]. Balancing this trade-off is non-trivial. Due to stochasticity each state-action

combination must be explored sufficiently, in order to establish a reliable estimate of

the expected reward [184]. As we shall see, further considerations are required within

multi-agent settings, in particular within domains where exploration is likely to result

in miscoordination [5, 33, 90, 120–122, 194].

Markov Decision Processes (MDPs) are well suited for modelling problems with

delayed reinforcement [87]. Therefore, in the sections below we use MDPs to formalize

the concepts outlined above.

2.2 Finite Markov Decision Processes

Sutton and Barto [184] consider any method capable of solving a MDP a reinforcement

learning algorithm. Finite Markov Decision Processes describe a class of problems (fully

observable environments) that defines the field of reinforcement learning, providing a

suitable model to formally describe the interactions between reinforcement learners and

their environment [79, 87, 108, 133, 153, 178, 184, 197]. Formally:

Chapter 2. Preliminaries 11

Definition 2.2.1 (Markov Decision Processes). A MDP is a tuple 〈X ,U ,R,P, γ〉,
where: X is a finite set of states; for each state x ∈ X there exists a finite set of

possible actions U ; R is a real-valued payoff function R : X × U × X ′ → R, where

Ru(x, x′) is the expected payoff following a state transition from x to x′ using action u;

P is a state transition probability matrix P : X ×U ×X ′ → [0, 1], where Pu(x, x′) is the

probability of state x transitioning into state x′ using action u; γ is a discount factor

γ ∈ [0, 1] weighting the value of future rewards.

In this thesis we shall assume that the environments proceed along evenly spaced

discrete time-steps t [197]. Furthermore, a MDP is an environment within which every

state has the Markov property: every state retains all relevant information independent

of the history of transitions leading up to the state, therefore the state transition prob-

ability fully depends on the current state [178, 184, 194, 200, 207]. A policy within a

MDP can be formulated as a function that takes a state X and returns an action U [88]:

π : X → U . (2.1)

Providing an agent is situated within a domain with the Markov property, and is

given sufficient time to explore, then reinforcement learning guarantees convergence

upon an optimal policy [85, 170, 184, 185, 194, 201]. As outlined above, the aim of a

reinforcement learning agent situated within a MDP is to maximize the discounted sum

of rewards [88]:
∞∑
t

γtRπ(xt)(xt, xt+1). (2.2)

To obtain the value of being in a state x conditioned on the current policy π we can use

the value function Vπ(x) [88]:

Vπ(x) =
∑
x′

Pπ(x)(x, x′)[Rπ(x)(x, x′) + γVπ(x′)]. (2.3)

The value is calculated recursively using all follow-on states x′. As is custom we define

the optimal value function indicating the value of a state given an optimal policy π∗(x)

as V∗(x) = maxπVπ(x), where π∗(x) selects the action u with the maximum expected

utility for state x [88]:

π∗(x) = argmax
u

{∑
x′

Pu(x, x′)[Ru(x, x′) + γV∗(x′)]
}

(2.4)

If the transitions and reward functions for a MDP are known, then using the Bellman

equation [13], value iteration can be applied to obtain estimates for the value func-

tion [88]:

V(x)← max
u

{∑
x′

Pu(x, x′)[Ru(x, x′) + γV(x′)]
}

(2.5)

Chapter 2. Preliminaries 12

However, the focus of this thesis is on independent learners, which update their policies

concurrently within a shared domain. As such, the reward and transition functions

depend on the joint-actions taken by all agents within the system. Therefore the Markov

property no longer holds, and we also no longer have any guarantees of convergence

[17, 66, 78, 90, 120, 125, 137, 145, 149, 157, 174, 181, 194]. We therefore turn to model

free reinforcement learning approaches.

2.3 Q-learning

The Q-learning algorithm introduced by Watkins [207, 208] is considered one of the most

important breakthroughs in reinforcement learning [183]. Using a dynamic programming

approach, the algorithm learns action-value estimates (Q-values) independent of the

agent’s current policy. Q-values are estimates of the discounted sum of future rewards

(the return) that can be obtained at time t through selecting an action u ∈ U in a state

xt, providing the optimal policy is selected in each state that follows. Q-learning is

therefore an off-policy temporal-difference learning algorithm.

In domains with a low dimensional state space Q-values can be maintained using

a Q-table. Q-values are updated as follows: upon choosing an action ut in state xt

according to a policy π, the Q-table is updated by bootstrapping the immediate reward

rt+1 received in state xt+1 plus the discounted expected future reward from the next

state, using a discount factor γ ∈ (0, 1] and scalar α to control the learning rate:

Qt+1(xt, ut)← Qt(xt, ut) + α
(
rt+1 + γmax

u∈U
Qt (xt+1, u)−Qt (xt, ut)

)
(2.6)

However, sequential decision problems can have a high-dimensional state space. In such

instances Q-values can be approximated using a function approximator, for instance

using tile coding [11, 59, 70, 175] or a neural network [7, 97, 105, 127–129, 160, 185, 203].

The parameters θ of the function approximator can also be learned via experiences

gathered by the agent while exploring their environment, choosing an action ut in state

xt according to a policy π, and updating the Q-function by bootstrapping the immediate

reward rt+1 received in state xt+1, plus the expected future reward from the next state

(as given by the Q-function) [128, 129, 203]:

θt+1 = θt + α
(
Y Q
t −Q (xt, ut; θt)

)
∇θtQ (xt, ut; θt) . (2.7)

Here, Y Q
t is the bootstrap target which sums the immediate reward rt+1 and the current

estimate of the return obtainable from the next state xt+1 assuming optimal behaviour,

discounted by γ ∈ (0, 1] (Eq. (2.8)). The Q-value Q (xt, ut; θt) therefore moves towards

the target by following the gradient ∇θtQ (xt, ut; θt).

Y Q
t ≡ rt+1 + γmax

u∈U
Q (xt+1, u; θt) . (2.8)

Chapter 2. Preliminaries 13

2.4 Exploration

Regarding the exploration/exploitation trade-off that is critical for reinforcement learn-

ing agents to converge, ε-greedy and soft-max exploration are two popular strategies

frequently referred to in reinforcement learning literature [15, 122, 184, 200]. For ε-

Greedy exploration the agent selects action u = argmaxuQ(x, u) with a probability

1 − ε and a uniformly random action with probability ε [129, 184, 193, 200, 216]. The

exploration rate ε can either remain constant or be decayed over time using a decay

factor µ. Soft-max action selection policies meanwhile compute the probability with

which each action should be selected using a Boltzmann distribution [15, 33, 170, 200]:

P (u|x) =

exp

(
Q(x, u)

τ

)
∑

u′∈U exp

(
Q(x, u′)

τ

) , (2.9)

where τ can be decayed to ensure that the action selection becomes greedier over time

[14, 111]. Out of the two methods ε-greedy is more standard in Q-learning. Tuning the

Boltzmann strategy is frequently a non-trivial task [?]. Nonetheless, the Boltzmann

strategy is frequently combined with Q-learning, as we shall see in Chapter 3. In de-

ployment agents trained using ε-greedy typically use an argmax action selection policy,

where the action with the largest Q-value is selected at each stage.

2.5 Deep Learning

Deep neural networks are trained to extract compact features from complex high di-

mensional inputs, combining layers of hierarchical features into ever more complex con-

cepts [55, 103, 133]. In this thesis we shall be working with Convolutional Neural Net-

works (ConvNets), which are geared towards extracting features from inputs in the form

of arrays and tensors [103]. For instance, a ConvNet trained to classify images consists

of layers of neurons, with the first layer extracting edges, which are combined into cor-

ners and contours by the next layers, before subsequently being combined to form the

object parts that enable a classification [55, 103]. Traditional ConvNet architectures

consist of multiple linear convolution and pooling layers stacked up on top of each other,

followed by fully connected layers, which precede the output layer [55, 103, 180]. The

convolutional layers are banks of filters which are convoluted with an input to produce an

output map [55, 84, 103]. A non-linear activation function is subsequently applied to the

output map such as the Rectified Linear Unit (ReLU) [135]. Through stacking multiple

non-linear layers the network can be trained to implement complex functions, that are

sensitive towards minute details within inputs, while simultaneously being able to ignore

less relevant features [103]. Providing the individual modules of the network are smooth

functions of their respective inputs, the network can be trained to minimize an objective

Chapter 2. Preliminaries 14

function by computing gradients via the back-propagation procedure [55, 103]. Deep

neural networks can therefore be trained end-to-end using stochastic gradient descent.

ConvNet’s strength lies in their large learning capacity, which can be adjusted

through changing the network’s depth and breadth [95, 215]. Furthermore ConvNets

take advantage of assumptions regarding the location of pixel dependencies within im-

ages, reducing the number of weighted connections compared to a fully-connected neural

network [95]. This ability of deep neural networks to learn hierarchies of concepts has

proven valuable in numerous fields, including computer vision [55, 92, 103], generative

modeling [56, 65, 96, 158, 171], speech and language processing [34, 173, 220]. Deep neu-

ral networks have also been widely used as function approximators in the field of incentive

based learning, into which both reinforcement learning and evolutionary algorithms fall,

allowing agents to learn control policies directly for high-dimensional observations of

their environment.

2.6 Deep Q-Learning

In deep reinforcement learning a multi-layer neural network is used as a function approxi-

mator, mapping a set of n-dimensional state variables to a set of m-dimensional Q-values

f : Rn → Rm, where m represents the number of actions available to the agent [128, 129].

Over the past decades neural networks have often been used as function approximators in

reinforcement learning literature [107, 126, 182, 185]. However, as mentioned, the recent

successes in the field of deep learning have enabled neural networks to identify intricate

structures and extract compact features from complex high-dimensional samples, such

as images and frame-sequences [55, 92, 103]. Using deep neural network architectures as

function approximator has allowed reinforcement learning approaches to master complex

environments with a high-dimensional state space [106, 127, 129, 168, 203]. The Deep

Q-network (DQN) introduced by Mnih et al. [129] updates parameters θ using stochas-

tic gradient descent, randomly sampling past transitions experienced by the agent that

are stored within an experience replay memory D [106, 129, 133, 160]. Transitions are

tuples (x, u, x′, r) consisting of the original state x, the action u, the resulting state x′

and the immediate reward r. The network is trained to minimize the time dependent

loss function,

Lt (θt) = E(x,u,x′,r)∼U(D)

[
(Yt −Q (x, u; θt))

2
]
, (2.10)

where (x, u, x′, r) ∼ U(D) represents minibatches of experiences drawn uniformly at

random from the set of samples stored inside the experience replay memory D [128, 129],

t the current iteration, and Yt is the target:

Yt ≡ r + γQ(x′, argmax
u∈U

Q(x′, u; θt); θ
′
t). (2.11)

Equation (2.11) is a form of double Q-learning [201] in which the target action is

selected using weights θ, while the target value is computed using weights θ′ from a

Chapter 2. Preliminaries 15

target network. The target network is a more stable version of the current network,

with the weights being copied from the current to the target network after every n

transitions [203]. Double-DQNs have been shown to reduce overoptimistic value esti-

mates [203]. This is interesting for our current work, since we are interested in scaling

optimistic independent learning approaches to multi-agent deep reinforcement learning,

to allow the learning agents to converge towards an optimal joint policy.

2.7 Policy Gradient Methods

While a DQN is used to approximate a value function, it is worth noting that deep

neural networks can also be trained to approximate a policy [6, 48, 78]. If we consider

value function and policy methods as individual sets, then at the intersection we find

actor-critic methods, where a critic learns a value function that is used to guide the

training of the actor [185]. Policy based methods have a number of advantages over

value based methods that use an implicit policy, such as being suitable for physical

control tasks. Lillicrap et al. [105] for instance introduced Deep Deterministic Policy

Gradient (DDPG), an off-policy actor-critic architecture that can master tasks with a

high-dimensional continuous action space. DDPG also uses an experience replay mem-

ory D to train the two networks. In contrast Asynchronous Advantage Actor-Critic

(A3C) replaces D with an asynchronous training scheme, obtaining uncorrelated state-

transitions samples from multiple CPUs. The method is on policy, with each of the

agents computing their respective gradients locally, before using the gradients to update

the global network prior to synchronization. While the contributions in this thesis focus

on scaling modified Q-learning algorithms that encourage cooperation, we shall discuss

modified versions of the above actor-critic algorithms while providing a recap of the

current state of the art of multi-agent deep reinforcement learning in Section 3.3.

2.8 Game Theory

Reinforcement learning was traditionally intended for single agent applications with

stationary dynamics. However, this assumption no longer holds in the multi-agent case.

As a result we must now consider the learning and interaction mechanisms of a group of

agents inhabiting the environment [33, 86, 197, 200]. A popular approach towards multi-

agent learning is to deploy independent learning agents that are each implemented with a

single-agent reinforcement learning algorithm [15, 79, 90, 120–122, 197, 209]. Each agent

independently learns a policy, and treats the other agents as part of the environment [15,

79]. However, convergence guarantees only exist for reinforcement learning algorithms

in domains where: (i) state transition probabilities P remain stationary; and (ii) every

state has the Markov property [101, 137, 199]. By ignoring each other the multi-agent

learning problem effectively becomes a single-agent learning problem, where interactions

with cohabiting agents are implicitly observed in what is considered a stochastic non-

stationary environment [15, 38, 137]. The Markov property therefore no longer applies

Chapter 2. Preliminaries 16

to multi-agent systems inhabited by independent learning agents [101, 137, 199]. Due

to learners updating their policy in parallel the state-transition probabilities are no

longer guaranteed to remain stationary [15, 17, 66, 78, 90, 137, 157, 174, 181, 194, 197].

MDPs are therefore unable to capture the interdependencies of systems inhabited by

independent learners. However, due to multiple agents interacting we have a game.

Thus, in this section we introduce relevant models from game theory, that provide a

suitable framework through which to describe and evaluate multi-agent learning [33, 90,

108, 137, 167].

To express ideas clearly game theory relies on a considerable amount of notations

and definitions [53]. To ensure that interpretations remain consistent across disciplines,

caution is necessary when applying terminology from game theory to multi-agent rein-

forcement learning. This section therefore provides a taxonomy of the game theoretic

terminology and definitions used within the context of this thesis. We focus on indepen-

dent learning within two types of games: stateless games that assume the environment

remains stationary, and Markov games, a direct generalization of MPDs, which assume

the agent interacts with a dynamic environment [108, 137, 167]. In the sections below

we will formally define each of these game types. Furthermore, the focus of this thesis

is on fully-cooperative settings. We shall therefore also introduce the notion of team-

games. Although the strategic interactions in game theory typically take place between

players, we shall use the terms agent and player interchangeably. In addition, to pre-

vent confusion in later chapters, we refer to actions taken by agents in stateless games

as a ∈ A while actions in Markov games are denoted as u ∈ U . A summary of the

correspondence of terminology between the domains of game theory and reinforcement

learning is provided in the Table 2.1 [15].

Reinforcement Learning Game Theory

Environment Game

Agent Player

Action Action

Policy Strategy

Reward Payoff

Table 2.1: Corresponding terminology for reinforcement learning and game theory.

2.8.1 Strategic-Form Games

Game theory uses mathematical objects to define strategic interactions between play-

ers [137]. For simplicity research in multi-agent reinforcement learning initially focused

on strategic-form (normal-form) games, which are known as both stateless and single-

state games [33, 90, 120–122]. Formally:

Chapter 2. Preliminaries 17

Definition 2.8.1 (Strategic-Form Game). A n-player strategic-form game (also known

as a normal form game and single-stage game) is defined as a tuple (n,A1...n,R1...n)

where n represents the number of players, A1...n the joint action space (A1 × ...×An),

with Ap being the set of actions available to player p, and Rp is the reward function

Rp : A1 × ...×An → R for each player p [20].

We note that in strategic-form games players make their choices simultaneously.

Strategic-form games with n = 2 are commonly known as bimatrix games. As the name

indicates, bimatrix games can conveniently be captured using a matrix. Figure 2.2 pro-

vides an example. Players I and II are referred to as row and column players respectively.

Therefore, the rows represent the actions available to player I, while the columns capture

the actions available to player II. The matrix cells contain the reward that each player

receives upon applying a joint-action. For n-player strategic-form game a n-dimensional

tensor can be used to capture strategic interactions.

@
@

@
@

@

I

II

A

B

A B

r(A,A)I r(A,B)I

r(A,A)II r(A,B)II

r(B,A)I r(B,B)I

r(B,A)II r(B,B)II

Figure 2.2: Two-player strategic-form game example, where players I and II are
referred to as row and column players respectively. The matrix cells contain the

reward that each player receives upon applying a joint-action.

Each player’s behaviour is defined by a (mixed) strategy π, which maintains prefer-

ences over the available actions [15, 194, 194]. Formally:

Definition 2.8.2 ((Mixed) Strategy). A strategy is a probability vector πp = (π1p,, π
k
p),

which assigns a probability πap to each action a ∈ A for player p, πp : Ap → [0, 1], such

that the sum of the probability vector πp is equal to 1,
∑

a∈Ap
πap = 1. If there exists

an action a where πap = 1, then the strategy πp is a pure strategy, where for all other

actions a′ ∈ Ap, where a′ 6= a, we have πa
′
p = 0. Otherwise we have a mixed strategy.

The outcome of a game is conditioned on the behaviour of each player, and is there-

fore determined by the players’ joint-strategies profile:

Definition 2.8.3 (Strategy Profile). A strategy profile is a vector −→π = (π1, ..., πn) that

contains a strategy for each of the n players.

Chapter 2. Preliminaries 18

2.8.2 Markov Games

Strategic-form games provide a framework within which to study stateless multi-agent

reinforcement learning algorithms. However, the MDP framework used for studying

singe agent reinforcement learning also accounts for probabilistic transitions between

states. As per the above definition strategic-form games are stateless games. There-

fore we require a richer framework that generalizes both strategic-form games and

MDPs [108, 137, 167, 200]. Here game theory also offers a solution. In 1953 Shapley

extended strategic-form games to Markov games (also known as stochastic games) [165].

Formally:

Definition 2.8.4 (Markov Games). A Markov game is defined as a tuple (n,X ,U ,P,R),

that has a finite state space X , for each state x ∈ X a joint action space (U1× ...×Un),

with Up being the number of actions available to player p, a state transition function

P : Xt × U1 × ... × Un × Xt+1 → [0, 1], returning the probability of transitioning from

a state xt to xt+1 given an action profile u1 × ... × un, and for each player p a reward

function: Rp : Xt×U1× ...×Un×Xt+1 → R [165]. We allow terminal states (absorbing

states) at which the game ends. Finally, each state x ∈ X is fully-observable.

Therefore, Markov games assume Markovian transitions that are conditioned on

transition probabilities for the joint-actions of all players [108]. Reducing the number of

players to one converts the Markov game into a MDP [137]. Furthermore, a strategic-

form game can be thought of as a Markov game with one state, where all joint-action

combinations result in a transition into an absorbing state [104, 137]. A player’s strategy

for Markov games is defined as follows:

Definition 2.8.5 (Strategies in Markov Games). For each player p, the strategy πp

represents a mapping from the state space to a probability distribution over actions:

πp : Xp → ∆(Up).

Therefore, transitions within a Markov game are determined by a joint strategy:

Definition 2.8.6 (Joint Strategy). The notation π refers to a joint strategy of all

players. Joint strategies excluding player p are defined as π−p. The notation 〈πp,π−p〉
refers to a joint strategy with player p following πp while the other players follow π−p.

2.8.3 Partially Observable Markov Games

Over the past decades Markov games have established themselves as a mathematical

framework for studying multi-agent learning [104, 108, 122, 137]. However, many multi-

agent environments are in-fact partially observable. A famous example of a domain with

partial observability is multiple agents playing football (soccer), where each player only

receives a local (potentially noisy) observation using their sensors [138, 177]. Formally,

games where learners only receive noisy partial observations of their environment can

be defined as partially observable Markov games [104]:

Chapter 2. Preliminaries 19

Definition 2.8.7 (Partially Observable Markov Games). A Partially observable Markov

game is defined as a tuple (n,X ,O,U ,P,R) that has a finite state space X , an obser-

vation function Op : X → Rd, which returns a d-dimensional observation for player p,

for each state x ∈ X a joint action space (U1 × ... × Un), with Up being the number of

actions available to player p, a transition function P : Xt×U1× ...×Un×Xt+1 → [0, 1],

returning the probability of transitioning from a state xt to xt+1 given an action profile

u1 × ...× un, and a reward function: Rp : X × U1 × ...×Un ×Xt+1 → R for each player

p [104, 165]. We allow terminal states (absorbing states) at which the game ends.

2.8.4 Repeated Games

Repeated games are frequently used as a test bed for novel multi-agent reinforcement

learning algorithms [33, 90, 120–122, 197, 197, 200]. In a repeated strategic-form game

the agents repeatedly play the same strategic-form game while being allowed to choose

a different action during each iteration. We observe that in the multi-agent reinforce-

ment learning literature the term repeated game has become synonymous with repeated

strategic-form game [120, 121, 137, 209]. However, a Markov game can also be re-

peated [35, 35, 44, 77]. A repeated Markov game (also known as a repeated stochastic

game) is a Markov game where there exists at least one state x ∈ X that is absorbing

(terminal) [35, 35, 44, 77]. Upon entering an absorbing state the game is reset, and

the players play the next iteration [35, 35, 44, 77]. Therefore, we argue that repeated

strategic-form games should be distinguished from repeated Markov games (or repeated

stochastic games) to promote consistency across disciplines.

The criteria used to evaluate repeated games include the total reward (for games

that are not played infinitely), discounted future payoffs and the expected average re-

ward [206]. In Markov games for instance we can compute the expected gain (also known

as the expected sum of future rewards) for each player:

Definition 2.8.8 (Expected Gain). Given a joint policy π the gain for each player p

starting from a state x is defined in Equation (2.12), where rp,t refers to the reward

received by player p at time-step t, while γ ∈ [0, 1) is a discount factor [122]:

Gp,π(x) = Eπ

{ ∞∑
k=0

γkrp,t+k+1|xt = x

}
. (2.12)

2.8.5 Incomplete Information and Bayesian Games

In traditional game theory the players are aware of each others’ utility functions [197].

However, in multi-agent reinforcement learning the agents frequently only have limited

information regarding the game (system) within which they are interacting, often being

unable to observe the actions and rewards of the other agents [137, 195]. Instead the

learners adapt their policy over time by updating their utility value estimates, thereby

adjusting to the other agents’ non-stationary policies [38, 137, 195]. Multi-agent rein-

forcement learning therefore often views (or uses) strategic-form games as a distributed

Chapter 2. Preliminaries 20

bandit problem [33]. This is in contrast to classical game theory, where the players con-

sider the consequences of their own choices in relation to rational decisions by the other

players, where factors that determine the agent’s choices are [194]:

1. the preference over the stability of outcomes resulting from each strategy;

2. the strategic choices that the other players are likely to make in response.

Rational decisions are also assumed in repeated games with incomplete information,

where a lack of full information can result from:

1. not being able to observe the exact state (e.g., the hand of an opponent in poker);

2. or not knowing the type of player (e.g., their exact reward function). Although we

note that each player maintains a belief (distribution) over the types of the other

players.

This set of games is frequently referred to as Bayesian games, since the players

typically employ a Bayesian approach towards unknown variables, e.g., the belief (dis-

tribution) over which type the other player is (i.e. what their payoff matrix is) [69].

2.8.6 Monitoring Conditions in Repeated Games

If the repeated games have imperfect monitoring conditions, where the agents cannot

observe each others’ action choices, the agents must learn a policy via an observable

signal from previous encounters, for instance using the reward signal [1, 89]. However, the

players can maintain beliefs over what type the other player is, with regards to the payoff

matrix [69]. This is in contrast to the majority of multi-agent reinforcement learning

algorithms that are applied to strategic-form games, including those discussed within

the main contribution chapters of this thesis. Typically independent learners choose

actions based on utility values computed via the reward signal without reasoning about

the other agents’ available actions and decisions [33, 77, 90, 120–122, 137]. However,

while the majority of the state-of the-art multi-agent reinforcement learning algorithms

are designed for repeated interactions with fixed opponents (or teammates), there have

been efforts towards learning best responses for arbitrary opponents in repeated games

[29, 35, 36, 44, 77]. For example, similar to work on Stochastic Bayesian Games, which

focus on incorporating beliefs over opponent types into observations, Hernandez-Leal and

Kaisers [77] utilize Bayesian policy reuse for a fast detection of opponents in repeated

Markov games, enabling players to choose from best response policies learned during an

offline training phase.

2.8.7 Game Types

The reward function of both strategic-from and (partially observable) Markov games

can help us differentiate between game types. Below we outline three types of games

Chapter 2. Preliminaries 21

frequently discussed in multi-agent reinforcement learning literature: purely competitive

(zero-sum) games, team-games and general sum games:

• Purely Competitive (Zero-Sum) Games: A game is a zero-sum game if the

total of all players rewards adds up to 0.

• Team-Games: A game is a team game if all n players receive the same reward,

i.e., R1 = R2 = · · · = Rn = R. Thus, team-games can be thought of as fully coop-

erative settings, where players have a shared objective to maximize their common

return [26, 33, 122]. We note that team-games are not to be confused with the

coalition games discussed in cooperative game theory, where groups of players form

coalitions to compete against other players [219].

• General-Sum Games: The payoffs in general-sum games can be arbitrary [137].

A famous class of general sum games are social dilemmas. We illustrate three

famous examples of social dilemmas in Figure 2.3: the prisoner’s dilemma, chicken

and stag hunt games [104]. In these games the actions available to the agents

can be interpreted as to either cooperate or defect. Therefore, for the bimatrix

games outlined in Figure 2.3, each stage game has four possible outcomes: R

(mutual cooperation); S (cooperating when the other player defects); T (giving

in to temptation and defecting when the other player cooperates) and P (both

players defect) [104]. A general sum game is considered a social dilemma if the

following four inequalities hold [104, 112]:

1. Mutual cooperation yields a higher payoff than mutual defection: R > P .

2. Mutual cooperation yields a higher payoff than being exploited: R > S.

3. Mutual cooperation is preferred to an equal probability of unilateral cooper-

ation and defection: 2R > T + S.

4. Either exploitation is more profitable than mutual cooperation, or mutual

defection is preferable to being exploited: T > R or P > S respectively.

In this thesis we empirically evaluate the extent to which independent learners can

overcome multi-agent learning pathologies within team-games. However, in Chapter 3

we conduct a literature review of the current state of the art of multi-agent reinforcement

learning, providing the necessary context for our contributions. The literature review

also includes recent work conducted using zero-sum and general-sum games.

2.8.8 Equilibrium Concepts

In multi-agent learning the interdependence of agents’ policies frequently limits the

extent to which each agent can maximize their individual payoff. As a result defining

a desired outcome in multi-agent reinforcement learning can be challenging, e.g., in

settings where agents have conflicting goals it is impossible for each agent to reach

their respective maximum expected gain [137]. Since the agents are computing best

Chapter 2. Preliminaries 22

@
@
I

II

C

D

C D

R S

R T

T P

S P

(a) Outcome variables

@
@
I

II

C

D

C D

3 0

3 4

4 1

0 1

(b) Prisoner’s Dilemma

@
@
I

II

C

D

C D

3 1

3 4

4 0

1 0

(c) Chicken

@
@
I

II

C

D

C D

4 0

4 3

3 1

0 1

(d) Stag Hunt

Figure 2.3: Social Dilemmas: (a) Illustrates outcome variables R, P , S, and T ,
whose inequalities can be used to determine if a general sum game is in-fact a social

dilemma [104, 112]; (b) The Prisoner’s Dilemma; (c) Chicken and (d) Stag Hunt.
Actions are to Cooperate or Defect.

responses to each others’ actions, multi-agent reinforcement learning literature often

relies on the equilibria concepts defined in game theory to evaluate the outcome of

games [122, 137]. Two equilibrium concepts commonly used in game theory to define

solutions in games are the Nash equilibrium [136] and Pareto optimality [122]. A group

of agents have converged upon a Nash equilibrium if no agent can improve it’s long-term

gain by unilaterally deviating from its current strategy [122, 136]. Formally:

Definition 2.8.9 (Nash Equilibrium). For a Markov game, a joint policy π∗ is a Nash

equilibrium iff no player i can improve it’s gain through unilaterally deviating from π∗:

∀i,∀πi ∈ ∆(X ,Ui), ∀x ∈ X ,Gi,〈π∗i ,π∗−i〉(x) ≥ Gi,〈πi,π∗−i〉(x). (2.13)

Therefore, no player will observe an increase in expected gain upon unilaterally

deviating from a Nash equilibrium. While Markov and strategic form games may have

more than one Nash equilibrium, from a group perspective Nash equilibria are often

sub-optimal [122]. In contrast Pareto-optimality defines a joint strategy π̂ from which

no player i can deviate without making at least one other agent worse off [122].

Definition 2.8.10 (Pareto Optimality). A joint-strategy π is Pareto-dominated by π̂ iff :

∀i,∀x ∈ X ,Gi,π̂(x) ≥ Gi,π(x) and ∃j,∃x ∈ X ,Gj,π̂(x) > Gj,π(x). (2.14)

A joint policy π̂∗ is Pareto optimal if it is not Pareto-dominated by any other π.

Chapter 2. Preliminaries 23

Traditional game theory makes assumptions that do not necessarily reflect the dy-

namics of the real world, e.g., hyper-ration players that are capable of correctly pre-

dicting other players in an equilibrium [53, 81, 159, 194]. Furthermore, determining

whether players have converged upon a Nash equilibrium remains on open challenge for

many multi-agent learning problems. These notions inspired John Maynard Smith [172]

to apply evolution concepts from biology to game theory, resulting in the paradigm of

evolutionary game theory. In contrast to traditional game theory, the question at the

core of evolutionary game theory is to what extent can a player learn to optimize their

behaviour in-order to maximize their return [194]. Learning in evolutionary game the-

ory occurs by conducting repeated games, where players with strategic preferences are

randomly drawn from large populations to interact with other players while having no

information regarding their preferences [211].

Evolutionary game theory provides solid foundations for modeling decision mak-

ing under uncertain conditions within complex domains, and is suitable for modeling

learning agents within the context of multi-agent systems. For instance, Wiegand [212]

introduced an evolutionary game theoretic model for cooperative co-evolutionary algo-

rithms, while evolutionary game theory’s replicator dynamics have been extended to

study the convergence guarantees and visualize the basins of attraction for numerous

multi-agent reinforcement learning algorithms [17, 88, 145, 198].

More recent work in this area has shown that asymmetric games can be decomposed

into symmetric counterparts, enabling an evolutionary game theoretic analysis of the

original asymmetric game [196], and the introduction of α-Rank [140], a principled evo-

lutionary dynamics methodology which can be used to rank agents within meta games

(empirical games), while providing insights into learning dynamics and basins of attrac-

tions. However, given that the independent learners studied in this thesis are situated

within team-games, our aim is to evaluate to what extent we can enable independent

learners to converge upon joint policies that are Pareto optimal. Identifying the Pareto

optimal solutions and Nash equilibria is relatively trivial for the games within which our

evaluations are conducted. Nevertheless, despite the simplicity of these games, consid-

erations are required to enable independent learners to converge upon a Pareto optimal

joint-policy.

2.9 Summary

In this chapter we outline the learning algorithms that serve as the foundations for

the methods introduced and evaluated throughout this thesis. We also provide a recap

of the necessary terminology from game theory to describe the multi-agent learning

problem. In the next chapter we shall use this terminology to formally define the multi-

agent learning pathologies that confront independent learners within team-games, before

providing a summary of independent learning algorithms designed to overcome these

pathologies. We subsequently discuss the current state of the art of multi-agent deep

Chapter 2. Preliminaries 24

reinforcement learning, which includes extensions of the deep reinforcement learning

algorithms discussed in Sections 2.6 and 2.7.

Chapter 3

Multi-Agent Reinforcement

Learning

In this chapter we conduct a survey of the current state of the art of multi-agent re-

inforcement learning. First we shall discuss the multi-agent learning pathologies that

confront fully-cooperative independent learners. This is followed by a recap of indepen-

dent learning algorithms designed to mitigate the outlined pathologies. Finally, we give

an overview of research conducted to date in the relatively young field of multi-agent

deep reinforcement learning, providing the necessary context for our own contributions.

3.1 Multi-Agent Learning Pathologies

One of the benefits of studying team-games, compared to zero-sum and general-sum

games, is that the proof of convergence on a global Nash-equilibria is relatively sim-

ple [146]. Identifying the optimal joint-action in these games is trivial for rational players

when the reward space is observable. However, converging upon an optimal joint-policy

is significantly harder when no information is available regarding the structure of the

reward space and the actions chosen by other agents [25, 33, 90, 120, 120, 122, 137, 148,

149]. Independent learners attempt to overcome the challenge of receiving imperfect

information through estimating utility values using a reward signal. However, due to

multi-agent learning pathologies independent learners’ utility value estimates are often

noisy, increasing the likelihood of convergence upon a sub-optimal joint-policy. In this

section we shall therefore define the independent learning problem along six axis, based

on six pathologies frequently observed in multi-agent reinforcement learning literature:

miscoordination, relative overgeneralization, stochasticity, the alter-exploration problem,

the moving target problem and deception. We briefly mentioned these pathologies in

Chapter 1. However, in this section we formally define each pathology. Addressing

one pathology often leaves agents vulnerable towards others. We discuss this in de-

tail, while considering the implications of tackling multi-agent learning pathologies in

complex environments.

25

Chapter 3. Multi-Agent Reinforcement Learning 26

To understand the pathologies, we consider two types of independent learners i

attempting to estimate the quality of an action a when paired with the actions A′

available to the other agent [90, 100, 209]:

• Average based learners: Estimate the quality of a based on the average return:

quality(a) =
∑
a′∈A′

Ri(a, a
′)

|A′|
. (3.1)

• Maximum based learners: Estimate the quality of a based on the maximum return

observed:

quality(a) = max
a′∈A′

Ri(a, a
′). (3.2)

3.1.1 Miscoordination

Miscoordination (also known as the Pareto-selection problem) is a common pathology in

repeated games [33, 90, 122]. It can occur when two or more incompatible Pareto-optimal

equilibria are present [122]. As a consequence of the equilibria being incompatible, one

agent choosing an action from an alternative equilibria is sufficient to lower the overall

utility. For example, there are two Pareto optimal equilibria in the Bimatrix games in

Figure 3.1, 〈A,A〉 and 〈B,B〉. Both joint actions result in a reward of 10 for each agent.

However, mixing actions from the two equilibria reduces the utility to 0. Formally we

can define miscoordination as follows [122]:

Definition 3.1.1 (Miscoordination). Two equilibria π and π̂ are incompatible iff ,

∃i,πi 6= π̂i,Gi,〈π̂i,π−i〉 < Gi,π (3.3)

@
@@
I

II

A

B

A B

10 0

10 0

0 10

0 10

Figure 3.1: Bimatrix game example with two Pareto optimal equilibria [209]

3.1.2 Relative Overgeneralization

Relative overgeneralization occurs when agents gravitate towards a robust but sub-

optimal joint policy, due to noise induced by the mutual influence of each agent’s ex-

ploration strategy on the other agents’ learning updates [212]. It is a type of action

shadowing, occurring in games where a sub-optimal policy yields a higher payoff on av-

erage when each selected action is paired with an arbitrary action chosen by the other

Chapter 3. Multi-Agent Reinforcement Learning 27

agent [147]. A shadowed equilibrium is an equilibrium defined by a policy π that is shad-

owed by a policy π̂ in a state x, where at least one agent exists who when unilaterally

deviating from π, will receive a gain G〈πi,π−i〉(x) less than the minimum gain that can

be obtained for deviating from π̂ [122]. Formally:

∃i∃πiG〈πi,π−i〉(x) < min
j,πj
G〈πj ,π̂−j〉(x). (3.4)

Relative overgeneralization occurs in games where, as a result of a shadowed equi-

librium, the agents converge upon a sub-optimal Nash Equilibrium that is Pareto-

dominated by at least one other Nash Equilibrium [111, 122]. As a result of relative

overgeneralization, independent learners can be drawn to sub-optimal but wide peaks

in the reward space, due to a greater likelihood of achieving collaboration there [147].

This problem is illustrated in Figure 3.2, which depicts a reward space for continuous

actions. The x and y axis represent the continuous actions for agents i and j, while

the z axis illustrates the reward for each joint-action 〈ai, aj〉. While M represents the

optimal action for agent i, pairing M with arbitrary actions by agent j results in a lower

utility on average compared to when agent i chooses action N .

Figure 3.2: An illustration of a reward space for continuous actions where the
relative overgeneralization pathology is present. The x and y axis represent the

continuous actions for agents i and j, while the z axis illustrates the reward for each
joint-action 〈ai, aj〉. For agent i action M can lead to the optimal reward, providing

agent j chooses the correct response. However, due to miscoordination being less
severely punished for actions approaching N , the agents are drawn towards a

sub-optimal Nash equilibrium. This illustration is taken from Wei and Luke [209].

3.1.3 Stochasticity of Rewards and Transitions

A deviation of multi-agent reinforcement learning literature from traditional economic

game theory is the assumption that the payoffs received can be stochastic, with joint-

actions not always resulting in a deterministic reward for each agent [90, 137]. Given that

Chapter 3. Multi-Agent Reinforcement Learning 28

stochasticity (of both rewards and transitions) are a central pathology of multi-agent

reinforcement learning, in this thesis we consider both partially and fully stochastic

rewards. Deterministic and fully stochastic reward functions exclusively return deter-

ministic and stochastic rewards respectively for each A1...n. For a partially stochastic

reward function there exists up to |A| − 1 joint actions A1...n for which a stochastic

reward is returned, while the remaining joint actions return deterministic rewards [90].

We illustrate this problem with two variations of a bimatrix-game in Figure 3.3.

In the deterministic reward variation, Sub-Figure 3.3(a), relative overgeneralization can

be overcome with maximum-based learning, where learners consider each action i based

on the observed maxj(i, j). However, this approach leaves learners vulnerable towards

misleading stochastic rewards. For example, by making the game partially stochastic,

Sub-Figure 3.3(b), the joint action 〈C,C〉 yields stochastic rewards of 14 and 0 with 50%

probability. Therefore, maximum based learners are drawn towards 〈C,C〉, despite each

agent only receiving a reward of 7 on average. In temporally extended games additional

stochasticity can emerge as a result of environmental factors such as noisy observations

[?] and probabilistic state transitions [?]. Meanwhile, independent learners facing

the curse of dimensionality must overcome challenges introduced by noisy approximated

utility estimates backed-up from stochastic follow-on state-transitions or rewards [122].

@
@

@@

I

II

A

B

C

A B C

11 −30 5

11 −30 5

−30 5 6

−30 5 6

5 6 7

5 6 7

(a) Deterministic

@
@

@@

I

II

A

B

C

A B C

11 −30 5

11 −30 5

−30 5 6

−30 5 6

5 6 14/0

5 6 14/0

(b) Partially Stochastic

Figure 3.3: Two variations of a bimatrix game that confronts independent learners
with relative overgeneralization. For the deterministic variation (a) maximum based

learners will converge upon the optimal joint-action 〈A,A〉, by ignoring the
miscoordination penalties. For (b) joint-action 〈C,C〉 yields stochastic rewards of 14

and 0 with 50% probability, towards which maximum based learners are drawn.

3.1.4 The Alter-Exploration Problem

The exploration-exploitation trade-off required by reinforcement learners adds to the

challenge of learning noise-free utility estimates. Matignon et al. [122] define global

exploration, the probability of at least one of n agents exploring as 1− (1− ε)n, where

each agent explores according to a probability ε. In environments with a shadowed

Chapter 3. Multi-Agent Reinforcement Learning 29

equilibrium, as defined in Section 3.1.2, higher global exploration can result in agents

converging upon a sub-optimal joint policy, as exploration can lead to penalties [122].

3.1.5 The Moving Target Problem

As mentioned, an environment can no longer be considered Markovian when multi-

ple independent learners update their policies in parallel, thereby losing the property

that guarantees convergence for a large number of single-agent learning algorithms

[20, 183, 195, 200]. This problem is amplified in multi-agent deep reinforcement learn-

ing, where using an experience replay memory D often results in deprecated transitions

being sampled during training [46, 141, 144].

3.1.6 Deception

Deception can occur in Markov games with |X | > 1, where utility values are calculated

by incorporating backed up rewards from follow-on states from which pathologies such

as miscoordination and relative overgeneralization can also be back-propagated [209].

This pathology leaves maximum based learners vulnerable towards overestimating the

expected utility of actions that result in state-transitions towards high utility states

that occur with a low probability. Furthermore, independent learners can be drawn

away from optimal state-transition trajectories in the presence of states with high local

rewards that lead to states with low future rewards [209].

3.2 Independent Learning Approaches

A number of games exist where independent learners using standard Q-learning are un-

able to converge upon equilibrium play [33, 90, 120, 137]. In team-games this is often due

to the learners being confronted with the learning pathologies outlined above. However,

an increased interest in independent learners over the past decades has led to the devel-

opment of algorithms that have proven effective within a range of challenging repeated

strategic-form and Markov games [35]. Despite these developments independent learning

still lacks a silver bullet approach, even for team bimatrix games [28]. Therefore, before

we discuss algorithms designed to facilitate cooperation within high-dimensional settings

(Section 3.3.1), in this section we provide a recap of independent learning algorithms

that have proven robust in low-dimensional settings, including: decentralized Q-learning,

distributed Q-learning [100], hysteretic Q-learning [120], Frequency Maximum Q-value

(FMQ) [90], Recursive Frequency Maximum Q-value (Recursive-FMQ) [121] and Lenient

Multi-Agent Reinforcement Learning 2 (LMRL2) [209].

LMRL2 is currently considered the state of the art independent learning approach

for mitigating the above pathologies within two-player strategic-form games and Markov

games with a small low-dimensional state space, enabling a high convergence rate even in

the presence of relative overgeneralization and stochasticity [209]. We verify this claim

in Chapter 4, evaluating to what extent LMRL2 (and the remaining approaches) can

Chapter 3. Multi-Agent Reinforcement Learning 30

converge upon optimal joint-policies upon increasing the scale of penalty values and the

number of learners. During this process we identify a number of LMRL2’s weaknesses,

which we subsequently address in Chapter 5. Finally, we scale and evaluate leniency

within a deep multi-agent reinforcement learning context in Chapters 6 and 7.

While LMRL2 represents the current state of the art, the approach requires care-

fully tuned hyperparameters that rarely translate across domains [209]. This finding

is worrying, as tuning hyperparameters is notoriously expensive within deep reinforce-

ment learning [79]. In contrast, decentralized and hysteretic Q-learning have less over-

heads [120]. Furthermore, despite being less robust towards a combination of stochas-

ticity and relative overgeneralization, both approaches have been scaled to multi-agent

deep reinforcement learning [104, 110, 141, 187]. Decentralized and hysteretic Q-learning

therefore provide valuable baselines against which to compare our contributions.

In contrast to hysteretic and decentralized Q-learning, no equivalent deep approaches

currently exist for FMQ and Recursive-FMQ. Nevertheless, the two approaches are

relevant to our current work, as they both modify the learner’s exploration policy.

They therefore provide a means to gain valuable insights regarding the choice of explo-

ration method, e.g., helping us better understand the challenges regarding the tuning of

LMRL2’s own modified Boltzmann exploration strategy.

3.2.1 Decentralized Q-learning

Implementing learning agents with standard Q-learning is often referred to in multi-

agent reinforcement learning literature as decentralized Q-learning. While decentralized

Q-learning has a poor convergence rate when confronted with domains suffering from

the pathologies discussed in this chapter, it does provide a valuable baseline against

which to compare other approaches, and is therefore frequently featured in multi-agent

reinforcement learning literature. We introduced the full version of Q-learning in Section

2.3. The stateless version of Q-learning used in previous work on strategic-form games

computes Q-value updates using an exponential weighted moving average [33, 90, 120,

121, 137], where the utility value after each episode is updated with the reward r as

follows 1:

Q(a) = (1− α)Q(a) + αr. (3.5)

Decentralized Q-learners are therefore by definition average reward learners. This under-

lines why Q-learning struggles when confronted with multi-agent learning pathologies,

such as relative overgeneralization and miscoordination [33, 90].

3.2.2 Distributed Q-learning

Lauer and Riedmiller’s [100] distributed Q-learning is believed to be one of the earliest

attempts at designing an algorithm to help cooperative learners prevent relative overgen-

eralization. In contrast to decentralized Q-learning the algorithm maintains two tables,

1Q-values Qi are computed independently for each agent i. For simplicity we drop the subscript i.

Chapter 3. Multi-Agent Reinforcement Learning 31

a Q-table and a policy table π. In regular Q-learning a learning rate α < 1.0 ensures

that Q-value updates only incorporate a portion of the observed reward and follow-on

utility estimate. In contrast distributed Q-learning uses α = 1.0 for positive updates

that increase a Q-value estimate. Therefore, the current Q-value is completely replaced

with the observed reward and follow-on utility estimate [100]:

Q(xt, ut)← max{Q(xt, ut), rt+1 + γmax
u∈U

Q(xt+1, u)}. (3.6)

For the stateless version applied to strategic-form games Lauer and Riedmiller [100]

use γ = 0. The current policy table π is updated iff an improvement occurs with

regards to the maximum Q-value, allowing the agents to overcome the Pareto selection

problem [100]. At time step t = 0 actions are selected arbitrarily: π0(x) ∈ U . At each

time-step the policy table π is updated as follows:

πt+1(x)←

πt+1(x), if x 6= xt or maxu∈U Qt(x, u) = maxu∈U Qt+1(x, u).

ut, otherwise.
(3.7)

Distributed Q-learners perform well in deterministic games, but are vulnerable towards

misleading stochasticity due to being maximum based learners [90].

3.2.3 Hysteretic Q-learning

By setting the learning rate alpha = 1.0 for positive updates, distributed Q-learners are

effectively maximum based learners. Hysteretic Q-learning was introduced to address

distributed Q-learners’ tendency of gravitating towards sub-optimal equilibria, as a result

of being blind towards stochastic reward signals that would result in a lowering of a utility

estimate [120]. To address this issue hysteretic Q-learning introduces a second learning

rate β < α. Given a temporal difference error δ,

δ ← r −Q(a), (3.8)

learning rate α is applied to updates where δ is positive, meaning the utility of an action

is currently being underestimated. Learning rate β, on the other hand, is applied when δ

is negative, giving the agent an optimistic disposition without entirely ignoring rewards

that would lower the agent’s utility estimate:

Q(a)←

Q(a) + αδ, if δ ≥ 0.

Q(a) + βδ, otherwise.
(3.9)

For Markov games delta is computed for state-action pairs:

δ = rt+1 + γmax
u∈U

Q(xt+1, u)−Q(xt, ut), (3.10)

Chapter 3. Multi-Agent Reinforcement Learning 32

and subsequently scaled using either α or β accordingly:

Q(xt, ut)← Q(xt, ut) +

αδ, if δ ≥ 0.

βδ, otherwise.
(3.11)

Hysteretic Q-learning is a form of optimistic learning with a strong empirical track

record in fully-observable environments, requiring less overhead than the majority of

independent learning approaches [9, 120, 122, 217]. However, hysteretic Q-learners still

incorporate maximum-based learning traits, due to their Q-value estimates being more

likely to reflect new superior results. Therefore, despite being introduced to address dis-

tributed Q-learners’ vulnerability towards misleading stochastic rewards, depending on

the values chosen for β, hysteretic Q-learners often converge on sub-optimal joint poli-

cies when simultaneously confronted with the pathologies of relative over-generalization

and stochasticity with regards to both rewards and stochastic transitions [209].

3.2.4 Frequency Maximum Q-value

The methods outlined above focus on modifying the Q-value update function. In con-

trast, Frequency Maximum Q-value (FMQ) [90] takes an alternative approach by modi-

fying the exploration strategy. Using a modified Boltzmann exploration (see Section 2.3),

FMQ applies an addition estimated value term EV to each Q-value while computing

the action selection probabilities:

P (a)←
exp

(
EV (a)

T

)
∑

a′∈A exp

(
EV (a′)

T

) , (3.12)

where:

EV (a)← Q(a) + c× freq(maxR(a))×maxR(a). (3.13)

In the above equation

• maxR(a) represents the maximum reward observed for action a;

• freq(maxR(a)) the likelihood of maxR(a) occurring, based on the number of times

maxR(a) was received divided by the number of times action a was selected;

• c determines the weighting of the FMQ heuristic. Therefore, c determines the

extent to which action selection should rely on high instead of average rewards.

The temperature T is determined using Equation 3.14:

T ← exp (−s× t)×MaxTemp+ 1, (3.14)

where t represents the current time-step; s controls the rate of exponential decay;

and MaxTemp is the initial temperature. Two limitations of FMQ are that it only

Chapter 3. Multi-Agent Reinforcement Learning 33

marginally outperforms decentralized Q-learning when the variance of the reward func-

tion is high [90], and that it is limited to repeated strategic-form games [121].

3.2.5 Recursive Frequency Maximum Q-value

FMQ inspired Matignon et al. [121] to develop Recursive-FMQ (RFMQ), which the

authors subsequently scaled to Markov games 2. Matignon et al. [121] developed

Recursive-FMQ to address FMQ’s weaknesses. For instance, the authors find that if

the first observation of the optimal joint-action is delayed, despite one of the agents

frequently choosing the optimal action, then the FMQ heuristic will enforce that the

optimal action remains an exploratory step. Thus the agents can only recover through

repeatedly executing the optimal join-action, enabling the frequency term to increase

sufficiently for both agents to converge upon the optimal joint-action. The first phase

of exploration is therefore critical for FMQ to succeed [121]. The authors’ mitigate

this problem by replacing the count based frequency used in FMQ with a recursively

computed frequency term F (a):

F (a)←

1, if r > Qmax(a).

(1− αf)F (a) + αf , if r = Qmax(a).

(1− αf)F (a), otherwise.

(3.15)

The recursive frequency term F (a) for action a is therefore reset to 1 when receiving

a reward r greater than the observed Qmax(a), with Qmax(a) subsequently set to r. If

r is not greater than Qmax(a), then F (a) is updated using a frequency learning rate αf

as outlined above in Equation (3.15). The frequency term F (a) therefore only decreases

in cases of miscoordination, due to the alter exploration problem, or due to a noisy

reward [121]. Similar to FMQ, Recursive-FMQ also modifies the exploration strategy.

However, instead of using Boltzmann Exploration, ε-greedy exploration is applied to

a policy vector π. A parameter free linear interpolation heuristic for evaluating the

actions determines when to update π (Equation (3.16)). The complete Recursive-FMQ

algorithm as specified by Matignon et al. [121] is outline in Algorithm 1.

E(a)← [1− F (a)]Q(a) + F (a)Qmax(a). (3.16)

RFMQ can swing between optimist or neutral depending on whether the rewards

received are deterministic or stochastic respectively [121]. Therefore, in deterministic

strategic-form games the agents predominately rely on Qmax(a), while an increase in

stochasticity will result in the agents being guided by the average reward Q(a) when

choosing an exploration step [121].

2The full version of RFMQ is named Swing between Optimal or Neutral (SOoN)[121].

Chapter 3. Multi-Agent Reinforcement Learning 34

Algorithm 1 Recursive-FMQ

1: Input: Max steps T , learning rate α, frequency learning rate αf
2: Init: ∀a ∈ A, Q(a)← 0, Qmax(a)← 0, F (a)← 1, E(a)← 0, π(a) arbitrarily
3: for t = 0 to T do
4: Select a according to the ε-greedy selection method based on π
5: Apply a and observe reward r
6: Q(a)← (1− α)Q(a) + αr
7: if r > Qmax(a) then
8: Qmax(a)← r
9: F (a)← 1

10: else if r = Qmax(a) then
11: F (a)← (1− αf)F (a) + αf
12: else
13: F (a)← (1− αf)F (a)

14: E(a)← [1− F (a)]Q(a) + F (a)Qmax(a)
15: if E(argmaxo∈A π(o)) 6= maxo∈AE(o) then
16: Select a random action amax ∈ argmaxo∈AE(o)

17: ∀b ∈ A π(b)←

{
1, if b = amax.

0, otherwise.

3.2.6 Lenient Multi-Agent Reinforcement Learning

Lenient learning was originally introduced by Potter and De Jong [152] to help coop-

erative co-evolutionary algorithms converge towards an optimal joint-policy, and was

later applied to multi-agent reinforcement learning as well [149]. It was designed to

prevent relative overgeneralization [212], and has been shown to increase the likelihood

of convergence towards the globally optimal solution in stateless coordination games for

reinforcement learning agents [17, 18, 148, 149]. Lenient learners do so by effectively

forgiving (ignoring) sub-optimal actions by teammates that lead to low rewards during

the initial exploration phase.

While initially adopting an optimistic disposition, the amount of leniency displayed

is typically decayed each time a state-action pair is visited [17, 18, 148, 149]. As a

result the agents become less lenient over time for frequently visited state-action pairs,

while remaining optimistic within unexplored areas. This transition to average reward

learners helps lenient agents avoid sub-optimal joint policies in environments that yield

stochastic rewards. Therefore, leniency is less vulnerable towards misleading stochastic

rewards than distributed and hysteretic Q-learning [209].

During training the frequency with which lenient reinforcement learning agents per-

form updates that result in lowering the Q-value of an action a is determined by leniency

and temperature functions L : A → R and T : A → R respectively [17, 18, 148, 149].

The stateless version of LMRL2 used on strategic-form games maintains temperature

values T (a) for each action a ∈ A. The mapping between actions and temperature

values for the function T is one to one, with each action being assigned a real-valued

temperature that is initially set to a defined maximum value. As in the original version

Chapter 3. Multi-Agent Reinforcement Learning 35

of leniency the temperature value associated with the selected action is decayed using a

decay rate ν following a utility value update [147, 148]:

T (a)← νT (a). (3.17)

The amount of leniency that should be applied during a utility value update is computed

using equation 3.18:

L (at) = exp

(
−1

kTt (at)

)
. (3.18)

A constant k is used as a leniency moderation factor to determine how the temperature

value affects the drop-off in lenience.

A Q-value update is performed iff the temporal difference error δ is positive, or a

random variable z ∈ [0, 1] is greater than the amount of leniency L(a) computed for

action a:

Q(a)←

r, if Q(a) = inf (Only if initialization was to infinity).

Q(a) + αδ, if δ > 0 or z > L(a).

Q(a), otherwise.

(3.19)

With LMRL2 Wei and Luke [209] extend leniency [147, 148]: LMRL2’s temperature

values T are not only used to compute the amount of leniency that a learner should

apply towards updates that would lower a utility value, but are also used to guide

the exploration-exploitation trade-off. Similar to FMQ the Boltzmann action selection

method is modified. The average temperature value,

T ← meanaT (a), (3.20)

determines the action selection probabilities returned by the modified Boltzmann explo-

ration method:

P (a)← Wa∑
a′∈AWa′

. (3.21)

For each action a ∈ A, Wa is computed using Equation (3.22), with ω being an action

selection moderation factor.

Wa ← exp

(
Q(a)

ωT

)
. (3.22)

Wei and Luke [209] add a MinTemp value for exploration to avoid floating point overflow

errors, and thereby prevent the agents from becoming completely greedy. The Q-value

update for LMRL2 are unaffected by the MinTemp value, and remain identical to how

leniency was described by Panait et al. [147, 148]. The complete algorithm for LMRL2

in repeated strategic-form games is outlined in Algorithm 2.

For Markov games leniency requires temperature values for state-action pairs:

L (xt, ut) = exp

(
−1

kTt (xt, ut)

)
. (3.23)

Chapter 3. Multi-Agent Reinforcement Learning 36

Algorithm 2 LMRL2 for Repeated Strategic-Form Games

1: Input: Max steps T , MaxTemp, MinTemp, learning rate α, leniency moderation
factor k, exploration moderation factor ω, temperature decay rate ν

2: for all a ∈ A do
3: Q(a)← initialize(a), T (a)←MaxTemp

4: for t = 0 to T do
5: if T < MinTemp or maxaQ(a) = inf then
6: u← argmaxaQ(a) (breaking ties randomly)
7: else
8: Choose a using probability distribution P obtained using Equation (3.21).

9: Execute action a and observe rt
10: Update Q(a) using Equation (3.19)
11: T (a)← νT (a)

For the temperature based exploration the average temperature value for the current

state, T (x) determines the action selection probabilities returned by the modified Boltz-

mann exploration method:

T (x)← meanuT (x, u). (3.24)

States are therefore also considered when computing the action selection probabilities,

P (u)← Wu∑
u′∈U Wu′

, (3.25)

using

Wu ← exp

(
Q(x, u)

ωT (x)

)
. (3.26)

As a result agents are more likely to choose a greedy action within frequently visited

states while remaining exploratory for less-frequented areas of the environment. How-

ever, Wei and Luke [209] note that the choice of the moderation factor ω is a non-trivial

task, as Boltzmann selection struggles to distinguish between similar Q-values [87].

After each transition the temperature value for the current state-action pair are

decayed, where t is the current time-step. If the agents find themselves in the same initial

state at the beginning of each episode, then after repeated interactions the temperature

values for state-action pairs close to the initial state can decay rapidly as they are visited

more frequently. However, it is crucial for the success of the lenient learners that the

temperatures for these state-action pairs remain sufficiently high for the rewards to

propagate back from later stages, and to prevent the agents from converging upon a

sub-optimal policy. Wei and Luke [209] attempt to mitigate the premature decay of

temperature values by folding the average temperature for the n actions available to

the agent in xt+1 into the temperature that is being decayed for (xt, at). The extent to

which this average temperature T t (xt+1) is folded in is determined by a constant υ as

Chapter 3. Multi-Agent Reinforcement Learning 37

Algorithm 3 LMRL2 for Markov Games

1: Input: Max steps T , MaxTemp, MinTemp, learning rate α, leniency moderation
factor k, exploration moderation factor ω, temperature decay rate ν

2: for all x ∈ X and u ∈ U do
3: Q(x, a)← initialize(x, u), T (x, u)←MaxTemp

4: x← initial state
5: for t = 0 to T do
6: if T (x) < MinTemp or maxaQ(x, u) = inf then
7: u← argmaxaQ(x, u) (breaking ties randomly)
8: else
9: Choose u using probability distribution P obtained using Equation (3.25).

10: Execute action u and observe xt+1, rt
11: Update Q(x, u) and T (x, u) using Equations (3.28) and (3.27) respectively.

follows:

Tt+1 (xt, ut) = β

Tt (xt, ut) if xt+1 is terminal.

(1− υ) Tt (xt, ut) + υT t (xt+1) otherwise.
(3.27)

The leniency Q-value update strategy now uses Equation (3.10) to calculate temporal

difference error δ. As above the Q-value updates are carried out if the δ is positive, or

a random variable z ∈ [0, 1] is greater than the leniency value L(x, u) computed for the

state-action pair (x, u):

Q(x, u)←

r, if Q(x, u) = inf (Only if initialization was to infinity).

Q(x, u) + αδ, if δ > 0 or z > L(x, u).

Q(x, u), otherwise.

(3.28)

The complete algorithm for LMRL2 in repeated games is outlined in Algorithm 3.

3.2.7 Comparison

Wei and Luke [209] provide a comprehensive evaluation of each of the approaches out-

lined above. Evaluations took place in four strategic-from games from multi-agent re-

inforcement learning literature and eight Markov games (six of which were designed by

the authors). Approaches were compared based on their ability to converge upon correct

and complete policies in self-play. Learners have converged upon a correct policy if they

behave optimally when following the policy from a designated initial state. Learners

who have converged upon a complete policy meanwhile behave correctly in every state.

As mentioned, the authors found that LMRL2 outperforms the other methods, being

placed in top statistical tier for correct joint-policies for eleven out of the twelve games,

while also being in the top tier for finding complete solutions. Surprisingly decentralized

Q-learning performed reasonably well in games where the learners were not confronted

with relative overgeneralization. However, as we shall see in Chapter 4, these findings

do not scale as the penalty for miscoordination is increased [90]. Both distributed

Chapter 3. Multi-Agent Reinforcement Learning 38

and hysteretic Q-learning meanwhile were able to prevent relative overgeneralization in

deterministic domains, but struggled in games with stochastic rewards and transitions.

For FMQ the authors replicate previous results where the percentage of correct runs

decreases for domains where the variance of the reward function is high [90]. RFMQ

meanwhile was the second most consistent performer on strategic-form games. However,

SOoN, the scaled version of RFMQ, lacked consistency in Markov games.

Despite conducting evaluations using tuned hyperparameters for each domain, the

authors find that even LMRL2 fails to consistently converge upon correct joint-policy in

all of the games. This raises the question to what extent hyperparameter settings can be

found that deliver a consistent performance across each game. Our work in Chapter 4

aims to answer this question within repeated n-player strategic-form games, while in

Chapter 5 we propose our own extensions to improve the convergence rate of lenient

learners within repeated strategic-form and Markov games with a low-dimensional state

space. In Chapters 6 and 7 we turn to multi-agent deep reinforcement learning, and

evaluate the extent to which findings from strategic-form and Markov games with a

low dimensional state-space scale to domains suffering from the curse of dimensionality.

We provide the necessary background regarding the current state of the art in multi-

agent deep reinforcement learning research below, to provide sufficient context for our

contributions in the later chapters.

3.3 Multi-Agent Deep Reinforcement Learning

The emergence of deep reinforcement learning has opened up new possibilities with

regards to scaling multi-agent reinforcement learning to complex high-dimensional en-

vironments. However, considerations are required when applying single-agent architec-

tures to multi-agent deep reinforcement learning. For example, independent learners

sampling from an experience replay memory D will be confronted with sample obsoles-

cence, where, due to the non-stationarity pathology, state-transitions stored within D
become obsolete and thereby misleading [45]. Initial solutions to this problem were to

either disable the experience replay memory or reduce the sample capacity [45, 104].

However, these solutions both limit sampling efficiency and threaten the stability of the

function approximator [46]. A further issue that becomes more noticeable in partially

observable Markov games is the credit assignment problem, where agents receive spurious

reward signals following unobserved actions performed by teammates [181]. Sunehag et

al. [181] hypothesize that increasing the number of agents within a multi-agent system

will increase the credit assignment problem.

In this section we first discuss methods that have recently been proposed in multi-

agent deep reinforcement learning literature to address the above challenges and facility

cooperation between agents. We subsequently provide an overview of related topics, be-

fore briefly discussing the practical challenges of multi-agent deep reinforcement learning.

Chapter 3. Multi-Agent Reinforcement Learning 39

Finally we shall conclude this chapter with a discussion regarding the limitations of the

current state of the art.

3.3.1 Facilitating Cooperation

Multi-agent deep reinforcement learning literature has put forward a number of solutions

for addressing the sample obsolescence and credit assignment problems. For instance, a

well studied approach towards addressing the credit assignment problem is to use reward

shaping through handcrafted reward functions, thereby providing agents with a personal

reward signal for each observation [23, 24, 38–40, 60, 62, 113, 181]. However, reward

shaping can deviate the learner from their true objective if poorly designed [38, 181].

Therefore, a more general solution is required. One approach is to mitigate both the

credit assignment and sample obsolescence problems through centralized learning [79].

Centralized learning reduces the multi-agent learning problem to a single agent-learning

problem through concatenating the observations from each of the agents in the system,

before feeding them to a network that outputs values (be it Q-values, or action values)

for each of the |A|n actions, where n represents the number of agents [15, 66, 181].

However, centralized approaches are impractical, as increasing the number of agents

leads to an exponential increase in the size of the state-action space [15, 38, 66, 79, 120,

157, 174, 181].

Gupta et al. [66] address this intractability by factoring the action space of the policy

to capture the action distributions for each agent, reducing the size of the action space

from |A|n to n|A|. However, this approach assumes that the agents are homogeneous

with regards to their action-space. Further drawbacks include: (i) the approach does

not address the issue of an exponential growth in the observation space upon increasing

n, and (ii) the model is centralized both during training and execution [66]. Finally,

Sunehag et al.[181] observe that in practice centralized approaches can fail to converge

on an optimal policy due to the lazy agent problem, occurring when a useful behaviour is

learned for one of the agents, resulting in the other agents being marginalized to prevent

interference.

Hybrid approaches using centralized training for decentralized execution (CTDE)

have emerged as an alternative to centralized and decentralized methods [139]. The

concept behind CTDE is to optimize a joint action-value function at training time that

in turn optimizes at an individual level, thereby enabling agents to learn individual

action-value functions [139, 174]. Therefore, in contrast to centralized approaches, once

deployed CTDE allows agents to choose actions based on individual observations us-

ing their own action-value function, without having to refer to the joint-action value

function [157, 174, 181]. CTDE is suitable for domains with partial observability where

sufficient information can be made available at training time to enable centralized train-

ing [174]. In the paragraphs below we provide a summary of CTDE approaches outlined

in literature, before turning to decentralized learning approaches.

Chapter 3. Multi-Agent Reinforcement Learning 40

PS-TRPO: Gupta et al. [66] proposed one of the first CTDE algorithms for multi-agent

deep reinforcement learning: a parameter sharing approach where each agent has access

to the same policy network. The network is trained using a replay memory D, which

stores state-transition tuples obtained from all agents within the system. Therefore,

the observation-action space for each agent is reduced to the same size as for concur-

rent learners [66]. The authors find that parameter sharing outperforms centralized

and concurrent learning on one discrete task (Multi-Agent Pursuit) and two continuous

control tasks (Waterworld and Multi-Walker). Parameter sharing has two considerable

advantages: (i) it reduces the number of learn-able parameters, and (ii) having invari-

ant agents mitigates the lazy agent problem [181]. However, further considerations are

required in domains with specialized roles or for heterogeneous agents [181].

COMA: Inspired by difference rewards [40, 117, 213], Foerster et al. [47] propose

an actor-critic architecture with a centralized critic that is used to train actors using

Counterfactual Multi-Agent Policy Gradients (COMA). The approach tackles the credit

assignments problem, and attempts to estimate the contributions made by each agent,

by computing a counter-factual baseline by marginalizing the impact of each actor in

turn.

MADDPG: Lowe et al. [109] introduce Multi-Agent Deep Deterministic Policy Gradi-

ents (MADDPG) which extends the deep deterministic policy gradient algorithm [105]

by adding a centralised critic network to train independent actor networks. However,

Rashid et al. [157] question the practicality of a fully centralized critic as the number

of agents increases.

Multiagent Soft Q-learning: Wei et al. [210] introduce Multiagent Soft Q-learning,

which converges towards a superior local optima compared to MADDPG [109] within

continuous action domains where learners must avoid relative overgeneralization. Mul-

tiagent Soft Q-learning augments rewards with an entropy term, thereby increasing the

likelihood of learners discovering multiple modes within a continuous action space [67,

210]. However, the approach is currently limited to single state continuous games.

Further successful approaches include training networks to approximate centralized

but factored Q-value functions [79]. Factorization in fully-cooperative games takes ad-

vantage of the fact that optimal actions across the agents are equivalent to the set of opti-

mal actions for each individual agent [174]. Value Decomposition Network (VDN) [181],

QMIX [157] and QTRAN [174] are recent examples of applying factorized joint-action

values into individual action-values for decentralized execution in domains with a high-

dimensional state space:

VDN: Sunehag et al. [181] introduce a value decomposition network (VDN) architec-

ture, an approach that learns an optimal value decomposition from the reward signal.

During training the gradient for the additive Q-value is back-propagated through the

individual DQN architectures, thereby mitigating spurious reward signals. Each agent

is therefore trained using it’s own observations, and can subsequently be deployed inde-

pendently of the other agents. Furthermore, the authors find that agents trained using

Chapter 3. Multi-Agent Reinforcement Learning 41

VDN outperform decentralized learners, and those trained using a centralized approach

by a large margin [181].

QMIX: A more recent approach, QMIX, estimates joint action-values as a non-linear

combination of agent-values, thereby helping agents learn optimal joint-action values

based on the additional information that centralized learning provides [157]. The au-

thors observe that the full factorisation of VDN is not necessary, and instead use a

mixing network that combines the individual Q values into a Qtot in a complex non-

linear way. The approach can therefore be applied to an increased number of potential

action-value functions compared to VDN, and outperforms VDN on a number of mi-

cromanagement tasks built in StarCraft II [205]. Furthermore, the approach performs

well in domains with heterogeneous agents. However, it can only be applied to problems

where a monotonicity assumption holds [157].

QTRAN: Son et al. [174] show that despite both VDN and QMIX being value based

approaches, their respective additivity and monotonicity assumptions limit the set of

games that each approach can be applied to. The authors demonstrate this using a

simple matrix game, and go on to propose a new method that is not conditioned on

these structural constraints, thereby being applicable to far wider range of domains:

QTRAN. An affine transformation transforms the original joint-action-value function

Qjt into a new one Q′jt, that shares the optimal joint action with Qjt and is factorized

by additive decomposition. The authors accomplish this task via training three networks:

a joint action-value network; individual action-value networks and a state-value network

which is used to address the impact of partial observability. The authors go on to

demonstrate the superiority of their method over VDN and QMIX in predator-prey and

a Gaussian-squeeze task.

Despite the empirical success of VDN, QMIX and QTRAN, training networks to

approximate factorized value-functions remain an open challenge for complex coordina-

tion problems [79]. Castellini et al. [28] empirically evaluate the representational power

of neural network architectures, using a factorization to represent the joint-action-value

function based on the sum of smaller action-value functions defined over a coordination

graph [64]. A number of factorizations are evaluated, including single agent decompo-

sitions (each agent is represented by a single neural network); random partitions (each

agent is only involved in one factor); overlapping factors (a fixed number of factors is

picked at random from the set of all possible factors); and complete factorization. Eval-

uations were conducted using one-shot games with six agents, thereby capturing the

exponentially large joint-action space problem, while at the same time minimizing noise

and other confounding factors. A number of games were identified where all factor-

izations are unable to overcome multi-agent learning pathologies, in particular relative

overgeneralization. The authors note that only joint-action learners are able to currently

address these pathologies. For more benign domains, not suffering from pathologies such

as relative overgeneralization, the authors achieve near perfect reconstruction for both

Chapter 3. Multi-Agent Reinforcement Learning 42

complete factorizations of a modest factor size, random overlapping factors, and non-

factored action-value functions.

The above finding highlights the need for deep approaches capable of mitigating the

pathologies outline in Section 3.1. An alternative approach towards overcoming the

challenges outlined above is to use decentralized learning agents with modified deep

reinforcement learning architectures [46, 109, 141, 143, 144, 221]. Given the amount

of work that has been conducted on concurrent and independent learning, a subset of

which we outline in Section 3.2, it should not come as a surprise that many of the recent

deep decentralized approaches draw inspiration from multi-agent reinforcement learning

literature.

For example, inspired by work on off-environment reinforcement learning [2, 49],

Foerster et al. [46] use importance sampling to estimate the probability of a joint-action

and subsequently apply a correction when a state transition tuple is sampled. However,

this approach requires the agents to maintain an action observation history for each

agent. The authors also introduce a second approach that uses fingerprints (consisting

of the iteration and exploration rate) to disambiguate the age of the state-transition

tuples. The authors’ fingerprints approach also draws inspiration from previous work,

in particular from hyper Q-learning [191], an approach that attempts to mitigate the

non-stationarity problem through each agent learning a policy conditioned on estimates

of the policies of other agents, based on their behaviour. The authors evaluate their

approaches on a decentralized variation of the StarCraft unit micromanagement task,

finding fingerprints to be the more effective method for resolving the non-stationarity

problem.

While Foerster et al.’s [46] contributions focus on stabilizing the experience replay

memory, Omidshafiei et al. [141] consider multi-task reinforcement learning, where

the goal is for agents to master a set of related tasks that have shared characteristics.

Their approach is to extract knowledge from previous tasks to accelerate learning on a

novel task. The authors introduce multi-task multi-agent reinforcement learning (MT-

MARL), and propose a two-phase approach towards mastering a partially-observable

multi-agent multi-target capture domains, where all agents must capture their targets

simultaneously. During the first learning phase hysteretic Q-learning [120] is combined

with a Recurrent-DQN [71] and Concurrent Experience Replay Trajectories (CERTS)

to enable coordination in single task domains. During the second phase the knowledge

from specialized network is distilled into a generalized recurrent multi-task network,

using a supervised learning approach (regression), where the specialist networks generate

sequences of experiences 〈oi,t, Q(oi,t; Θ(i))i,t〉, consisting of observations o for agent i at

time-step t and the corresponding Q-values based on the specialized parameters Θ.

The majority of the approaches outlined in this section focus on mitigating the non-

stationarity and credit assignment problems. However, as outlined in Section 3.1, a large

number of multi-agent learning pathologies exist that can prevent multi-agent deep re-

inforcement learning agents from converging upon optimal joint-policies. Furthermore,

Chapter 3. Multi-Agent Reinforcement Learning 43

the finding that factored approaches fail to overcome pathologies such as relative over-

generalization in stateless games is concerning [28]. In Chapters 6 and 7 we therefore

evaluate the extent to which we can modify the (Double) DQN architecture to enable

independent learners to overcome relative-overgeneralization and the alter-exploration

problem in addition to the sample obsolescence problem [143, 144].

We wish to highlight at this point that the literature on multi-agent deep reinforce-

ment learning is diverse and does not exclusively focus on the challenges discussed above.

Indeed, in a recent survey Hernandez-Leal et al. [79] identify four (non-disjoint) cat-

egories within which work conducted to date can be placed: (i) learning cooperation;

(ii) learning communication; (iii) agents modeling agents; and (iv) analysis of emergent

behaviors. The literature discussed above has focused on learning cooperation. In the

remainder of this section we provide a brief summary of the work conducted in each of

the other three areas. Finally, we discuss the limitations of the current state of the art.

3.3.2 Enabling Communication

While this thesis focuses on agents learning implicit coordination strategies, enabling

agents to communicate has been one of the long term goals of artificial intelligence re-

search. Agents capable of explicit communication are hypothesized to be more likely

to achieve coordination while interacting with other agents, provide a means through

which to allow humans to interpret agent behaviour, and potentially even provide an-

swers regarding how language is developed [131]. In contrast to research from natural

language processing, e.g., machine translation, answering questions, and sentiment anal-

ysis, research on learning communication has predominately focused on agents learning

their own communication protocols to achieve coordination while solving cooperative

tasks [79]. Agents are judged to possess an understanding of language when they can

utilize communication protocols to accomplish their goals in the domain within which

they are situated [52, 131]. The emergence of deep reinforcement learning has enabled

significant progress in this area [45, 93, 102, 131, 151, 179].

Foerster et al. [45] introducing Reinforced Inter-Agent Learning (RIAL) and Dif-

ferentiable Inter-Agent Learning (DIAL). Both approaches use deep neural networks to

approximate Q-values and messages to send to the other agent. RIAL uses CTDE. DIAL

meanwhile takes advantage of the fact that the communication channels are differen-

tiable, allowing gradients to be computed for the messages transmitted during training.

Therefore, DIAL is fully-differentiable across agents [45]. While the work conducted by

Foerster et al. [45] focuses on value based methods, other approaches have utilized pol-

icy gradient approaches (where parameterized policies are trained directly with respect

to the expected return) [93, 102, 131, 151, 179]. For example, Mordatch and Abbeel

[131] investigate to what extent a grounded composition language can emerge, using

streams of abstract discrete symbols (to which no meaning has been assigned) within a

cooperative partially observable Markov game. Upon adding vocabulary size penalties

that discourage synonyms the authors find that the agents settle on using a consistent

Chapter 3. Multi-Agent Reinforcement Learning 44

set of symbols for each meaning. Interestingly the authors also observe the emergence

of nonverbal communication cues when symbolic communication is disabled [131].

Malysheva [114] et al. introduce MAGnet, a network that maintains a relevance

graph neural network, trained to represent the relationship between agents and objects

within their environment. MAGnet is also implemented with a message generation

module, capable of passing messages based on the relevance graph. The authors applied

their architecture to the popular Pommerman environment [123], finding that MAGnet

outperforms DQN and MADDPG.

In contrast to the research outlined in this subsection all the agents evaluated in

this thesis are unable to communicate with each other via symbolic means. However,

for our deep experiments in Chapter 7 we also observe nonverbal communication. Our

motivation for focusing on implicit coordination is that communication can be expensive

in practical applications, and requires efficient protocols [8, 122, 188].

3.3.3 Agents Modelling Agents

This thesis focuses on evaluating the extent to which independent learners can converge

upon optimal joint-policies within repeated team-games. Our learners are unaware of

the presence of other learning agents in the strategic-form and Markov games that we

shall use for our evaluations in Chapters 4 and 5. Meanwhile, although the learners can

observe other agents in the Markov games that we shall discuss in Chapters 6 and 7, the

algorithms do not attempt to explicitly model the other agents in the system. However,

a significant number of multi-agent deep reinforcement learning publications focus on

agents trained to model other agents and predict their actions and goals [79].

Approaches range from training separate networks to predict the policies of other

agents using hand crafted features [73] to learning them from raw observations using

auxiliary loss functions [82]. Meanwhile a variety of methods have been used to predict

the goals and actions of other agents. Self other modeling (SOM) [156] for instance

can be applied to settings where each agent is assigned a goal at the beginning of an

episode. SOM predict the other agent’s actions using the agent’s own policy network,

with a separate network subsequently inferring the other agent’s goals based on the

actions taken. Network parameters are updated at the end of each episode. However,

one of the disadvantages of this approach is that optimization takes longer, as additional

optimization steps are performed based on the actions that have been observed [79].

In contrast theory of mind approaches attempt to estimate the beliefs and mental

states of other agents [79]. For instance, Theory of Mind Network (ToMnet) [155] is

composed of three modules: a character network, a mental state network, and an action

prediction network. The character network uses trajectories from previous episodes to

estimate the agent type, whereas the mental state is inferred via observations from the

current episode. Outputs from both these networks are fed to the prediction network

together with the current observation, in order to predict the agent’s next action.

Chapter 3. Multi-Agent Reinforcement Learning 45

Other approaches in this area have been inspired by literature from game theory and

multi-agent learning [79], e.g., using networks to find approximate Nash equilibria in

two-player imperfect information games using Neural Fictitious Self-Play (NFSP) [75],

or Policy-Space Response Oracles (PSRO) [99], a meta-algorithm for independent rein-

forcement learners that returns mixtures of approximate best response policies using an

empirical game theoretic analysis. PSRO addresses the fact that independent learning

agents implemented with approximators such as a DQN are likely to over-fit on each

other in repeated games. While the above approaches can be used in cooperative and

mixed settings, they are particularly useful in general sum games when an agent wants

to estimate whether the opponent/teammate is a cooperator or defector.

3.3.4 Analysis of Emergent Behaviors

Work on emergent behaviour primarily focuses on the extent to which modifying envi-

ronment impacts the learning dynamics of deep reinforcement learning algorithms [79].

For example, one of the first works on multi-agent deep reinforcement learning evalu-

ated decentralized DQNs learning to play pong, and the extent to which modifying the

reward function results in the agents cooperating or competing [187].

Leibo et al. [104] introduced a specific type of Markov game for studying multi-

agent deep reinforcement learning agents: the sequential social dilemma (SSD). In SSDs

inequalities in the reward space reflect those from social dilemmas (general-sum games)

in the form of strategic-form games. The paper focuses on the extent to which policies

implementing cooperate and defect strategies emerge depending on on environmental

factors (with regards to an abundance of resources).

A proportion of our work in Chapter 7 is also concerned with emergent behaviours.

However, instead of being placed within SSDs our learners are situated within temporally

extended versions of team strategic form games, with the motivation of studying the sus-

ceptibility of agents towards the learning pathologies outlined above within temporally

extended fully cooperative high dimensional domains.

3.3.5 Practical Challenges

Hernandez-Leal et al. [79] discuss two practical challenges of multi-agent deep reinforce-

ment learning research: hyperparameter tuning and coping with limited computational

resources. The authors note that optimizing deep learning architectures is far from triv-

ial, and there is a danger that a choice of sub-optimal hyperparameters can result in

a state of the art approach under-performing [124]. This result has been attributed to

the difficulty in training deep learning architectures, and the fact that the deep learning

community needs to learn more about hyperparameter tuning [79]. However, for smaller

research institutions limitations with regards to resources can add to the challenge.

Many deep learning architectures require GPUs in order for learners to converge within

a reasonable amount of time [133, 161, 162]. Training deep learning architectures to

converge typically requires hours, even on moderately complex domains. Furthermore,

Chapter 3. Multi-Agent Reinforcement Learning 46

memory limitations constrain the number of runs that can be launched in parallel, as

well as the number of (decentralized) agents that can inhabit a multi-agent system. This

makes hyperparameter tuning and gathering sufficient runs for bench-marking a chal-

lenging task [66, 79], and helps explain why a significant number of multi-agent deep

reinforcement learning experiments are conducted in simplistic grid-world like domains,

reducing the computational cost of conducting experiments [104].

3.3.6 Limitations

The majority of the research discussed in this section focuses on a small subset of the

pathologies outline in Section 3.1, such as the impact of stochasticity and the sample ob-

solescence problem [46]. One of the few exceptions is work conducted by Wei et al. [210]

on multi-agent soft Q-learning. However, multi-agent soft Q-learning is currently a

centralized approach that has only been tested within a single state continuous game

for two agents, with the authors investigating the algorithm’s scalability to indepen-

dent learners within sequential continuous games. Rashid et al. [157] note that the

simplest approach to multi-agent reinforcement learning is to forgo centralised learn-

ing and CTDE in favour of concurrent learning. However, as discussed in this section,

the likelihood of convergence within multi-agent deep reinforcement learning increases

significantly when using centralized and factorized approaches, as the non-stationarity

issue prevents decentralized agents from converging upon an optimal joint-policy [157].

Though even for CTDE approaches convergence upon optimal joint-policies is also not

guaranteed. As noted by Castellini et al. [28], overcoming multi-agent learning patholo-

gies such as relative overgeneralization is far from trivial, even for factorized approaches.

Meanwhile there exists a multitude of independent learning approaches designed to help

multi-agent reinforcement learning agents overcome multi-agent learning pathologies, as

discussed in Section 3.2. This raises the question to what extent these approaches can

be scaled to multi-agent deep reinforcement learning.

Chapter 4

Evaluating Independent

Reinforcement Learning

The work presented in this chapter is in preparation for a submission to the Journal

of Machine Learning Research.

Recent years have seen an increase in the number of multi-agent deep reinforcement

learning publications in high ranking artificial intelligence conferences, including AAAI,

ICML, ICLR, IJCAI, NeurIPS, and AAMAS [79]. However, multi-agent reinforcement

learning is a topic that has been studied for decades. For instance, Lauer and Ried-

miller’s [100] distributed Q-learning is widely believed to be one of the first independent

learning approaches to address cooperative learning pathologies. The authors intro-

duced distributed Q-learning in the year 2000, thirteen years prior to Mnih et al. [128]

establishing the field of deep reinforcement learning.

In the years that followed a large number of independent learning algorithms were

introduced, each designed to address weaknesses identified in previous approaches [17,

90, 120–122, 145, 148, 149, 194, 209]. Therefore, multi-agent deep reinforcement learning

research can draw upon a wealth of past literature for both inspiration and guidance.

However, Hernandez-Leal et al. [79] warn of a deep learning amnesia, where researchers

either pay insufficient attention to findings discussed in existing literature, or where past

literature has not been cited.

The aim of this chapter is to address this amnesia by re-evaluating traditional in-

dependent learning approaches with the criteria of scalability to multi-agent deep rein-

forcement learning in mind. More specifically, we evaluate to what extent decentralized

Q-learning [33], hysteretic Q-learning [120], Frequency Maximum Q-value (FMQ) [90],

Recursive Frequency Maximum Q-value (RFMQ) [121] and Lenient Multi-agent Rein-

forcement Learning 2 (LMRL2) [209] can overcome relative overgeneralization and mis-

coordination in extended versions of four well studied strategic-form games (introduced

in Section 4.2). We establish the robustness of each approach towards an increase in the

number of learning agents, and the scale of the penalty values following miscoordination.

47

Chapter 4. Evaluating Independent Reinforcement Learning 48

Out of the listed approaches LMRL2 is considered the most robust method for pre-

venting relative overgeneralization from occurring within a stochastic reward space [209].

We conduct an extensive empirical evaluation in Section 4.4 to verify these claims, mo-

tivated by a cherry picking tendency that has emerged in multi-agent reinforcement

learning research, where only positive results are reported out of fear that reporting

negative findings can lead to a publication being rejected [79].

In addition, inspired by the finding that with sufficient hyperparameter tuning older

methods can outperform more recent approaches [79, 124], we consider to what extent

the performance of independent learners can be improved with carefully tuned hyperpa-

rameters. Furthermore, we consider the scalability of each approach to multi-agent deep

reinforcement learning (with the exception of decentralized and hysteretic Q-learning,

which have already been scaled to high-dimensional domains [110, 141]). In the next

section we discuss traits that we consider desirable in order to successfully scale an

independent learning approach to multi-agent deep reinforcement learning.

4.1 Desirable Traits of Independent Learners

The convergence properties for model-free deep reinforcement learning algorithms are

known to be brittle [68]. Applying a (potentially novel) approach to a domain for

the first time can therefore require a time consuming and meticulous hyperparameter

tuning process [79]. Deep learning’s hardware requirements have further implications

for this tuning process [161, 162]. Only a limited number of runs can be gathered in

parallel depending on the number of GPUs available (for approaches using an experience

replay buffer), or CPUs (when gathering samples in parallel that are communicated to a

centralized learner) [127]. Furthermore, the optimization of deep learning architectures

can require hours of training time [79]. Therefore, given that hyperparameter tuning is

expensive in multi-agent deep reinforcement learning, our aim is to identify independent

reinforcement learning approaches, that:

i require a limited amount of hyperparameter tuning;

ii are robust towards the multi-agent learning pathologies outlined in Section 3.1;

iii are scalable with respect to the number of learning agents;

iv are invariant towards the scale and variance of the reward function;

v use an efficient exploration strategy.

An idealized independent learning approach can therefore overcome multi-agent

learning pathologies within a wide range of domains, using a (near) identical hyper-

parameter configuration. However, achieving consistent convergence upon optimal join-

policies using a single hyperparameter configuration has proven challenging, even within

stateless games with a small action space [90, 121, 209]. This observation is concerning,

Chapter 4. Evaluating Independent Reinforcement Learning 49

given that one of the goals of multi-agent reinforcement learning is to deploy coop-

erative independent learners within complex settings with unfamiliar dynamics, e.g.,

space exploration, where autonomous devices such as rovers must learn to cooperate

within uncertain and unsafe environments [218]. The aim of this chapter is therefore

to identify hyperparameter configurations that increase the likelihood of independent

learners converging upon optimal joint-policies within the largest possible number of

n-player strategic-form games. Robust configurations are identified via an extensive hy-

perparameter sweep, allowing us to visualize the inter-dependencies of each algorithm’s

hyperparameters.

The remainder of this chapter will proceed as follows: first we outline the four

strategic-form games that we shall use for our evaluations. We subsequently empirically

re-evaluate the independent learning algorithms outlined above. However, with scala-

bility to complex temporally-extended, high-dimensional state-spaces in mind, our aim

is to identify robust hyperparameters for each algorithm to enable a consistent perfor-

mance across settings. Furthermore, we evaluate the scalability of each approach with

regards to coping with increasing penalty values (as in Kapetanakis and Kudenko [90])

and number of agents. We focus on the more robust algorithms identified by Wei and

Luke’s [209] empirical evaluation, selecting approaches that were among the statisti-

cally significant best performers. We therefore exclude distributed Q-Learning, which

struggles when confronted with stochasticity. We shall however include decentralized

Q-learning, as it provides a valuable baseline.

4.2 n-Player Strategic-Form Games

Over the past two decades repeated single-stage strategic-form team-games have often

been used as a test-bed for independent learning algorithms [17, 90, 120–122, 145, 148,

149, 194, 209]. At each time-step every agent simultaneously chooses and executes

an action [90, 120, 121]. In team-games the learners subsequently receive an identical

reward signal corresponding to the joint-actions [90, 120, 121]. This signal is used

to update their respective utility values. We conduct our empirical evaluation using

n-player strategic-form game versions of the four bimatrix games studied in past multi-

agent reinforcement learning literature [90, 120, 121, 149]: (i) the Climb Game [33]; (ii)

the Partially Stochastic Climb Game [90]; (iii) the Fully Stochastic Climb Game [90]; (iv)

the Penalty Game [33]. Below we provide a definition for each game, and discuss the

variations used to evaluate the independent learning algorithms.

4.2.1 The Penalty Game

The penalty game introduced by Claus and Boutilier [33] confronts independent learners

with the miscoordination pathology. We outline the bimatrix game version of the penalty

game in Figure 4.1. Increasing the magnitude of the penalty value p results in lowering

utility value estimates for actions A and C for average reward learners using random

Chapter 4. Evaluating Independent Reinforcement Learning 50

exploration. For example, p = −100 will result in agents being less likely to choose

actions A and C compared to when p = 0 [33]. The magnitude of p can therefore increase

the likelihood of convergence on joint-action 〈B,B〉, despite joint actions 〈A,A〉 and

〈C,C〉 yielding higher rewards. As a result the game has three deterministic equilibria

〈A,A〉, 〈B,B〉 and 〈C,C〉, with both 〈A,A〉 and 〈C,C〉 being Pareto optimal. In our

empirical evaluation in Section 4.4 we shall investigate the extent to which scaling the

penalty value p causes the percentage of optimal joint-policies to decrease. Furthermore,

we conduct evaluations using n-player variations of the penalty game [91]. The rewards

in the n-player version are determined using Equation (4.1), where i and j represent

agent indexes.

@
@@
I

II

A

B

C

A B C

10 0 p

10 0 p

0 2 0

0 2 0

p 0 10

p 0 10

Figure 4.1: The Penalty Game [33]

r ←

10, iff ∀i, ai = A ∨ ∀i, ai = C,

2, iff ∀i, ai = B,

p, iff ∃i, ai = A ∧ ∃j, aj = C,

0, otherwise.

(4.1)

4.2.2 The Climb Game

Variations of the Climb Game [33] are frequently used to study the susceptibility of

independent learners towards relative overgeneralization. The bimatrix version of the

Climb Game is outlined in Figure 4.2. The Pareto-Optimal Nash Equilibrium is 〈A,A〉.
However, assuming two independent learners initially choose each of the actions avail-

able with equal probability, using an average based algorithm, and a sufficiently large

penalty p, Player I will estimate that C should be preferred over A and B, since∑
〈A, j〉 <

∑
〈C, j〉 and

∑
〈B, j〉 <

∑
〈C, j〉 for each of Player II ’s actions j [209].

Player II will come to the same conclusion, resulting in the players gravitating towards

the shadow equilibrium 〈C,C〉. If an alternative action is still being played with a small

probability, then Player I will move from action C to B. Subsequently Player II will

also climb from C to B. At this point the agents will climb no further, having reached

a Pareto dominated sub-optimal Nash equilibrium 〈B,B〉 [33, 90, 149]. As with the

penalty game we shall study the impact of increasing the penalty p on the independent

Chapter 4. Evaluating Independent Reinforcement Learning 51

learning algorithms, and shall also conduct experiments with n-player versions of the

Climb Game. Learners receive a reward determined by Equation (4.2), where i and j

represent agent indexes, and na represents the number of players that chose action a.

r ←

9 + nA, iff ∀i, ai = A,

5 + nB, iff 6 ∃i, ai = A ∧ ∀ai = B, ∀aj = C, j > i,

p, iff ∃i, ai = A ∧ ∃j, aj = B,

0, otherwise.

(4.2)

@
@@
I

II

A

B

C

A B C

11 p 0

11 p 0

p 7 6

p 7 6

0 0 5

0 0 5

Figure 4.2: The Climb Game [33]

4.2.3 The Partially Stochastic Climb Game

In the Climb Game outlined in Figure 4.2, relative overgeneralization can be overcome

with maximum-based learning, where agents consider each action i based on the ob-

served maxj(i, j). However, this approach leaves agents vulnerable towards misleading

stochastic rewards. Kapetanakis and Kudenko [90], for instance, introduce stochastic

variations of the Climb Game, where overoptimistic independent learners can be led

astray by misleading stochastic rewards. For example, in the Partially Stochastic Climb

Game described in Figure 4.3, the joint action 〈B,B〉 yields stochastic rewards of 14 and

0 with 50% probability. Therefore maximum based learners are drawn towards 〈B,B〉,
despite each agent only receiving a reward of 7 on average. For the n-player Partially

Stochastic Climb Game we add a stochastic reward to the case where all n players choose

B in Equation (4.3), where i and j represent agent indexes, and na represents the num-

ber of players that chose action a, and rewards x/y means rewards x and y are yielded

with 50% probability.

r ←

9 + nA, iff ∀i, ai = A,

2(5 + nB)/0, iff ∀i, ai = B,

5 + nB, iff 6 ∃i, ai = A ∧ ∃i, ai = C ∧ ∀ai = B, ∀aj = C, j > i,

p, iff ∃i, ai = A ∧ ∃j, aj = B,

0, otherwise.

(4.3)

Chapter 4. Evaluating Independent Reinforcement Learning 52

4.2.4 The Fully Stochastic Climb Game

The fully stochastic Climb Game variation yields stochastic x/y rewards with 50% prob-

ability for each joint-action (ai, aj) for agents i and j (see Figure 4.4) [90]. For the

n-player Fully Stochastic Climb Game (Equation (4.4)) we add a stochastic reward to

each joint-action, where i and j represent agent indexes, and na represents the number

of players that chose action a, and rewards x/y means rewards x and y were yielded

with 50% probability. In addition to the penalty value p for miscoordination, we also

add a scalable penalty value l to lower the average utility for 〈A,C〉, 〈C,A〉 and 〈C,B〉.

r ←

10 + nA/8 + nA, iff ∀i, ai = A,

2(5 + nB)/0, iff 6 ∃i, ai = A ∧ ∀ai = B, ∀aj = C, j > i,

5/p, iff ∃i, ai = A ∧ ∃j, aj = B,

5/l, otherwise.

(4.4)

@
@

@@

I

II

A

B

C

A B C

11 p 0

11 p 0

p 14/0 6

p 14/0 6

0 0 5

0 0 5

Figure 4.3: The Partially Stochastic Climb Game: The joint-action (B,B) yields
stochastic rewards of 14 and 0 with 50% probability [90].

@
@

@@

I

II

A

B

C

A B C

12/10 5/p 5/l

12/10 5/p 5/l

5/p 14/0 12/0

5/p 14/0 12/0

5/l 5/l 10/0

5/l 5/l 10/0

Figure 4.4: The Fully Stochastic Climb Game: Each joint-action yields stochastic
rewards x/y, yielding rewards of x and y with 50% probability [90].

Chapter 4. Evaluating Independent Reinforcement Learning 53

4.3 Previous Findings

Table 4.1 provides a recap of Wei and Luke’s [209] findings for each of the bimatrix

games outlined in Section 4.2. We observe that none of the approaches achieved a 100%

convergence on the optimal joint-policy across all games. However, LMRL2 is among the

statistically significant highest performing approaches in all games with the exception

of the Partially Stochastic Climb Game (verified using the Marasquilo procedure for

χ2). Meanwhile, Recursive-FMQ (RFMQ) outperformed all other approaches in the

Partially Stochastic Climb Game, while converging on the second highest correct run

total for the Fully Stochastic Climb Game. Interestingly (decentralized) Q-learning

struggles in the three Climb Game variations, while converging on the correct policy in

99.97% of runs in the penalty game. However, this is due to the selection of a rather

benign penalty value, p = −10. Scaling the penalty significantly changes the results

for decentralized Q-learning [90]. The results also reiterate distributed and hysteretic

Q-learner’s vulnerability towards misleading stochastic rewards, as evident from the low

convergence rates within the Partially and Fully Stochastic Climb Games. The results

outlined in Table 4.1 were achieved using tuned hyperparameters for each game. For

example, for each game LMRL2 was evaluated using a different leniency moderation

factor k. We list the default and tuned hyperparameters used by Wei and Luke [209] in

Tables 4.2 and 4.3 respectively.

Strategic Game LMRL2 Q-learning Distributed Q Hysteretic Q FMQ RFMQ*

Climb Game (DET) 99.99% 16.61% 100% 100% 99.56% 100%

Climb Game (PS) 9,930% 18.20% 28.21% 74.54% 98.57% 99.95%

Climb Game (FS) 90.16% 17.63% 38.74% 25.58% 38.94% 87.23%

Penalty Game 99.99% 99.97% 100% 100% 100% 100%

Table 4.1: A summary of Wei and Luke’s [209] strategic-form game results, where
deterministic, partially stochastic and fully stochastic rewards are abbreviated to

DET, PS and FS respectively. The authors verified the statistical significance of the
results using the Marasquilo procedure for χ2. A boldface was used to denote
algorithms that did not significantly outperform the other highest performing

approaches. *The authors provide a summary table for both strategic form and
Markov games, and therefore denote the RFMQ column as SOoN. However, RFMQ is

the stateless version of SOoN, designed for strategic form games.

4.4 Empirical Evaluation

In this section we visualize the results from an extensive hyperparameter sweep for

LMRL2 [209], decentralized Q-learning [33], hysteretic Q-learning [120], FMQ [90] and

RFMQ [121] within the n-player strategic-form games outlined above. We conduct

1,000 training runs for each hyperparameter combination. This allows us to visualize

and identify the best performing hyperparameter configurations for each strategic-form

Chapter 4. Evaluating Independent Reinforcement Learning 54

Algorithm Default Parameters

LMRL2 α← 0.1, ν ← 0.995, MaxTemp← 50, MinTemp← 2, k ← 1, ω ← 1, Boltzmann

Q-learning α← 0.1, ε← 0.1, µ← 1, ε-Greedy

Hysteretic α← 0.1, ε← 0.1, β ← 0.01, µ← 1, ε-Greedy

RFMQ α← 0.1, ε← 0.1, αf ← 0.05, µ← 1, ε-Greedy

FMQ α← 0.1, c← 10, MaxTemp← 500, MaxMove← 2000

Table 4.2: Default hyperparameters used by Wei and Luke [209].

Algorithm Climb Game Climb Game (PS) Climb Game (FS) Penalty Game

LMRL2 k = 107 k = 103 k = 101 k = 100

Q-learning ε = 0 ε = 0.01 α = 0.05 α = 0.05

ε = 0.35

Hysteretic β = 0.0001 β = 0.01 β = 0.001, ν = 0.99 β = 0.01

MinTemp = 2 ε = 0.12

MaxTemp = 40

δ = 0.99

Boltzmann

FMQ - - c = 200 -

RFMQ - αf = 0.05 αf = 0.03 -

- ε = 0.05 α = 0.03 -

Table 4.3: Tuned hyperparameter configurations used by Wei and Luke [209].

game, and evaluate to what extent optimal hyperparameter configurations are over-

fitting on the problem in question. With regards to default parameters, to remain inline

with previous work [90, 209]:

• Unless specified otherwise we use learning rate α = 0.1;

• Q-values are initialized to 0;

• With the exception of FMQ all training runs end after 15,000 iterations;

• To remain inline with past literature FMQ is trained for 2,000 iterations.

We implement the repeated strategic form games as outlined in Wei and Luke’s [209]

Appendix, where each iteration ends in a terminal (absorbing) state. Therefore, as

in previous work [33, 90, 120–122], we compute utility values using an exponentially

weighted moving average using the stateless version of each algorithm discussed in Sec-

tion 3.2. Finally, we list the scaled penalty values for each game variation in Table 4.4.

Chapter 4. Evaluating Independent Reinforcement Learning 55

Reward Scale Penalty Game Climb Game Partially Stochastic Climb Game Fully Stochastic Climb Game (k, l)

Low -10 -30 -30 (-65, -5)

Medium -100 -300 -300 (-650, -50)

High -1000 -3000 -3000 (-6500, -500)

Table 4.4: Strategic-Form Games Penalty Look-up Table.

4.4.1 Decentralized Q-learning

Despite decentralized Q-learners being average reward learners by definition (see Equa-

tion (3.5)), Wei and Luke’s [209] empirical evaluation found that 99.97% of Penalty

Game runs converged upon an optimal joint-policy when the penalty value p = −10.

The agents were implemented with a learning rate α = 0.05 and a fixed ε-Greedy explo-

ration rate of ε = 0.35. However, while this particular setting beats previous baseline

convergence rates for p = −10, scaling the penalty value p has been shown to result in

agents finding actions A and C less attractive [33, 90]. This raises the question of how

robust this hyperparameter setting will prove upon scaling p.

Interestingly we also observe 99.97% optimal joint-policies upon conducting 10,000

training runs using the above settings. However, this number decreases to 0% upon

setting the miscoordination penalty p to −100. Scaling p has a significant impact on the

Q-value estimates for each action, as illustrated in Figure 4.5. In Sub-Figures 4.5(a) and

4.5(b) we observe for runs that converged on 〈A,A〉 and 〈C,C〉 respectively, the average

Q-values for the respective actions were just above 6. Meanwhile, the estimated utility

of actions belonging to the alternative Pareto optimal solution was −6. The utility

estimates for actions upon which the agents converged being significantly lower than

10 can be explained by the increased global exploration resulting from using ε = 0.35

with a decay rate of 1.0. However, the average utility values for both actions drop

below −10 upon setting p to −100, as illustrated in Sub-Figure 4.5(c). Furthermore, we

observe a significant decrease in the average reward (Figure 4.6). Therefore, the optimal

hyperparameter setting identified by Wei and Luke [209] for the Penalty Game with

p = −10 does not scale to p = −100.

(a) p = −10, 〈A,A〉 (b) p = −10, 〈C,C〉 (c) p = −100, 〈B,B〉

Figure 4.5: The Penalty Game: Average Q-value comparison for decentralized
Q-learning agents for p = −10 and p = −100. For (a) and (b) we compute the

averages for runs that converged upon joint-policies 〈A,A〉 and 〈C,C〉 respectively.

Chapter 4. Evaluating Independent Reinforcement Learning 56

Figure 4.6: Mean reward comparison for p = {−10,−100} in the Penalty Game.
(Decentralized Q-learning)

For our first hyperparameter sweep we investigate if hyperparameter combinations

exist that enable decentralized Q-learning to overcome an increased penalty p = −100,

while also using a stationary exploration strategy. We also evaluate the impact of in-

creasing the number of agents from two to four. Runs are gathered for each com-

bination of learning rate α = {0.1, 0.05, 0.01, 0.005} and stationary exploration rate

ε = {0.35, 0.3, 0.25, 0.20, 0.15, 0.10, 0.05}. For each combination of the α and ε settings

we gather 1,000 runs. In Figure 4.7 we use heat-maps to illustrate the percentage of

runs that converge upon an optimal joint-policy for each setting.

(a) Agents: 2, p = −10 (b) Agents: 2, p = −100

(c) Agents: 4, p = −10 (d) Agents: 4, p = −100

Figure 4.7: Percentages of correct runs for decentralized Q-learning within variations
of the penalty game using ε-Greedy exploration with stationary exploration rates.

As expected we observe that scaling the penalty value p leads to a reduction in the

percentage of correct (optimal) runs for each setting (Sub-Figures 4.7(b) and 4.7(d)).

While the tuned parameters α = 0.5 and ε = 0.35 used by Wei and Luke [209] converge

on the optimal joint-policy for each of the 1,000 runs when p = −10, this number drops

to 0 upon scaling the penalty to p = −100. Interestingly, when p = −10 we observe

that in the two agent penalty game (Sub-Figure 4.7(a)) 100% of the runs converged on

Chapter 4. Evaluating Independent Reinforcement Learning 57

the optimal joint-policy for (α = 0.05, ε = 0.35) and (α = 0.1, ε = 0.2); with a greater

percentage of optimal joint-policies observed for larger learning rates α and exploration

rates ε. However, in the heat-map for two agents with p = −100 (Sub-Figure 4.7(b))

we observe that agents using a lower learning rate α are more likely to converge on

the optimal joint-policy, when combined with a low exploration rate ε. Only a small

percentage of runs converge upon the correct joint-policy when α > 0.01 and ε > 0.1.

The highest percentages of runs are achieved for α = {0.01, 0.005} and ε = 0.05.

With regards to scaling the number of agents, the heat-maps illustrate a significant

reduction in the percentage of correct runs upon increasing the number of agents from

two to four, even when p = −10 (Sub-Figure 4.7(c)). We observe that α = 0.1 and

ε = 0.1 deliver the highest convergence rate (36%). We hypothesize that, as a result

of an increase in global exploration, agents utilizing a larger exploration rate ε rarely

converge upon correct joint-policies in the four-agents setting. For instance, one of the

strongest settings in the two agent scenario (α = 0.05, ε = 0.35) only converges on

correct joint polices on 0.3% of runs. As in the two agent setting, scaling the penalty

to p = −100 results in learners with both low learning and exploration rates having

the largest convergences percentage. More specifically, we observe that agents with

α = {0.01, 0.005} and ε = 0.05 outperform the other settings (Sub-Figure 4.7(d)).

We hypothesize that learners benefit from lower learning and exploration rates within

the more challenging settings, due to a small percentage of agents choosing the optimal

joint-actions 〈A,A〉 during the initial steps. Subsequently a combination of low global

exploration and small update step size protect the agents from the alter exploration

problem. We provide evidence to support this hypothesis in Figure 4.8, which illustrates

the optimal joint-policy percentages for additional four-player, p = −100 runs, where

the agents receive a demonstration of the optimal joint-actions during the first iteration:

for each agent i action a was set to ai = A.

Figure 4.8: Percentage of optimal joint-policies upon giving decentralized Q-learners
a supervised start within the four-player Penalty Game with penalty p = −100.

During the first iteration action ai = A for each agent i.

We observe that a relatively low likelihood of each agent exploring, with ε = 0.1, is

sufficient for the agents to converge on a sub-optimal joint-policy. Furthermore, even

with a small likelihood of exploration at each step, with ε = 0.001, we observe a sig-

nificant decrease in the number of optimal joint policies as learning rate α is increased

Chapter 4. Evaluating Independent Reinforcement Learning 58

from 0.05 to 0.1. We find that decentralized Q-learners are also more likely to converge

upon the optimal joint-policy within the three variations of the Climb Game when using

lower learning rates α and exploration rates ε (Figure 4.9). However, the percentage of

optimal join-policies remains low across all settings.

(a) Deterministic (b) Partially Stochastic (c) Fully Stochastic

Figure 4.9: Correct run percentages for decentralized Q-learners within the
two-agent low-penalty Climb Game variations. We observe a higher convergence rate

for learners using low exploration rates ε and learning rates α.

While Wei and Luke [209] evaluate decentralized Q-learning agents with a station-

ary exploration strategy, Matignon et al. [121] note that decentralized Q-learning can

often benefit from a greedy in the limit with infinite exploration (GLIE) strategy, e.g.

decreasing the exploration frequency throughout the training process. For instance,

using Boltzmann exploration with a initial temperature of 5000 and a decay rate of

0.997, Matignon et al. [121] report a 96.6% convergence rate in the penalty game with

p = −100. We conduct our own hyperparameter sweep using Boltzmann exploration for

MaxTemp = {50, 500, 5000} and decay rates {0.9, 0.99, 0.995, 0.996, 0.997, 0.998, 0.999},
conducting 1,000 training runs for each combination.

Figure 4.10: Convergence rates for decentralized Q-learners using Boltzmann
exploration within the medium-penalty two-agent Penalty Game.

We illustrate the convergence rates in the heat-map in Figure 4.10. We replicate

the 96% convergence rate achieved by Matignon et al. [121] for MaxTemp = 5000

and a decay rate of 0.997. Furthermore, we observe three configurations that converge

on 99% of the runs conducted: {(MaxTemp = 500, Decay = 0.998), (MaxTemp =

50, Decay = 0.998) and (MaxTemp = 50, Decay = 0.999)}. In fact, we observe a

pattern where learners benefit from lower maximum temperature values and slower

Chapter 4. Evaluating Independent Reinforcement Learning 59

temperature decay rates. Meanwhile, combining large maximum temperature values

with slow temperature decay rates, i.e., remaining exploratory leads to a large percent-

age of sub-optimal joint-policies (for example (MaxTemp = 500, Decay = 0.999) and

(MaxTemp = 5000, Decay > 0.997)). Similarly we observe a drop in convergence when

using a decay rate less than 0.997.

However, even with Boltzmann exploration decentralized Q-learners are unable to

prevent relative overgeneralization from occurring in the three Climb Game variations

(Figure 4.11). We do however identify settings that improve upon the results reported

by Wei and Luke [209]: in all three Climb Game variations learners using a maximum

temperature of either 50 or 500, and decay rates 0.997 or 0.998 converge upon optimal

joint-policies on above 20% of runs.

(a) Deterministic (b) Partially Stochastic (c) Fully Stochastic

Figure 4.11: Decentralized Q-learning: Correct run percentages for two-agent low
penalty Climb Game variations using Boltzmann exploration.

The above results provide further evidence that baseline methods against which novel

approaches are benchmarked are often tuned insufficiently [78, 124]. While decentral-

ized Q-learning has been found to perform worse than state of the art methods in the

Penalty Game with p = −100 [90, 122], we show that competitive convergence rates

can be achieved with a carefully tuned Boltzmann exploration. However, the tuned

hyperparameters are unable to deliver a consistent performance across domains. Fur-

thermore, hyperparameter tuning is more expensive within complex domains. Therefore,

the above results reiterate the need for robust independent learning approaches. In par-

ticular, balancing the exploration-exploration trade-off within high-dimensional domains

is a non-trivial problem [142, 176, 190]. Therefore, independent learning approaches are

required that are capable of overcoming relative overgeneralization and miscoordination

while mitigating the challenges introduced by scaled penalty values [90] and increased

global exploration [122].

4.4.2 Frequency Maximum Q-value

In the previous section we establish that balancing the exploration-exploitation trade-

off is critical for decentralized Q-learners to mitigate multi-agent learning pathologies.

We now turn to Frequency Maximum Q-value (FMQ) [90]. While scaling FMQ to

more complex domains requires considerable modifications [121], we consider that valu-

able lessons can be learned from this approach, especially with regards to modifying

Chapter 4. Evaluating Independent Reinforcement Learning 60

the Boltzmann exploration method, an approach Wei and Luke [209] also proposed for

LMRL2. We evaluate inter-dependencies between the temperature decay moderator s

and the EV term weighting factor c, by training agents implemented with FMQ using

each combination of the following settings:

• s = {0.002, 0.003, 0.004, 0.005, 0.006};

• c = {10, 50, 100, 150, 200}.

To remain inline with previous research [90, 209] we set:

• MaxTemp = 500.0;

• MinTemp = 1.0.

With the exception of the Fully Stochastic Climb Game, we identify numerous hy-

perparameter configurations that converge upon correct joint-policies within 100% of the

runs for the low-penalty, two-player versions of each game 1. Furthermore, we observe

that FMQ scales well in the Penalty Game when increasing the scale of the penalty value

and the number of agents, as evident from the heat-maps illustrating the correct policy

percentages for each EV term weighting factor c and temperature decay moderator s

configuration in Figure 4.12.

(a) Agents: 2, p = −10 (b) Agents: 2, p = −100 (c) Agents: 2, p = −1000

(d) Agents: 4, p = −10 (e) Agents: 4, p = −100 (f) Agents: 4, p = −1000

Figure 4.12: Heat-maps illustrating the correct run percentages for independent
learners using FMQ within six variations of the Penalty Game.

In the two-player Penalty Game we find that learners benefit from an increased re-

liance on the EV heuristic as the penalty p increases. In Sub-Figure 4.12(c), for instance,

1We provide a detailed summary of our FMQ results in Appendix A, Section A.1.

Chapter 4. Evaluating Independent Reinforcement Learning 61

where p = −1000, we observe 100% convergence when c ≥ 150. Meanwhile, the percent-

ages of correct join-policies decrease across a range of hyperparameter configurations in

arguably the most challenging domain setting, with four-agents and high-penalty values,

as illustrated in Sub-Figure 4.12(f). However, FMQ still delivers high convergence rates

for s = 0.002, including 99.4% when c = 10. Furthermore, we observe that the learners

benefit from lower decay moderators s in general in this setting, therefore preferring a

slow transition from explorers to exploiters.

An interesting anomaly emerges within the four-player penalty game. When p =

−10 we notice a sharp decrease in the percentage of optimal joint-policies for c = 10

and s = 0.002 (Sub-Figure 4.12(d)). Not only does this result stand out from the

100% convergence rate achieved by the other hyperparameter configurations, but upon

inspecting the heat-maps in Sub-Figures 4.12(e) and 4.12(f) it becomes apparent that

c = 10 and s = 0.002 achieved 97% and 99% for p = −100 and p = −1000 respectively.

Initially the 5.4% convergence rate for c = 10, s = 0.002 and p = −10 appears to be

an error. However, upon closer investigation we find there is a further critical inter-

dependency between parameters c, s and the value chosen for MaxTemp. Choosing

lower values for MaxTemp increases the percentage of optimal joint policies, as the

scatter plot in Sub-Figure 4.13(a) illustrates. However, we can also increase the number

of training iterations and give the learners more time to converge upon one of the Pareto

optimal equilibria, as the results of experiments conducted with MaxMove = 3000 in

Sub-Figure 4.13(b) demonstrate.

(a) MaxTemp impact on optimal run % (b) Mean reward over 3000 iterations

Figure 4.13: The plots illustrate the interesting interdependence between FMQ
hyperparameters. We observe a delayed convergence for FMQ learners implemented
with c = 10, s = 0.002 and MaxTemp = 500 when confronted with the four-player

Penalty Game with penalty p = −10. Sub-Figure (a) illustrates how choosing a lower
MaxTemp value increases the percentage of optimal joint-policies for this particular
FMQ configuration, whereas Sub-Figure (b) illustrates that given more time, FMQ

learners with MaxTemp = 500 will eventually converge upon an optimal joint-policy.
The plot also illustrates, that due to the FMQ Boltzmann selection method the same

setting requires less time when the scale of the penalty value p is increased.

Sub-Figure 4.13(b) raises the question why convergence requires less iterations for

p = −100, and even fewer for p = −1000. Upon closer inspection, we observe that

while actions from one of the Pareto optimal solutions obtain the highest Q-values after

only a few iterations for each setting, including p = −10 (See Figure 4.14), due to the

Chapter 4. Evaluating Independent Reinforcement Learning 62

Boltzmann selection method being able to distinguish between larger Q-values earlier,

the point at which the selection probabilities are distinguishable occurs significantly

earlier for larger penalty values p, as illustrated in Figure 4.15. Therefore, in this

particular setting the agents actually benefit from receiving larger penalty values.

(a) 〈A,A,A,A〉, p = −10 (b) 〈A,A,A,A〉, p = −100 (c) 〈A,A,A,A〉, p = −1000

(d) 〈C,C,C,C〉, p = −10 (e) 〈C,C,C,C〉, p = −100 (f) 〈C,C,C,C〉, p = −1000

Figure 4.14: Q-values (averaged over 1,000 training runs) for FMQ in the four-player
Penalty Game. Illustrations are provided for runs that have either converged upon the

joint-actions 〈A,A,AA〉 or 〈C,C,C,C〉. The learners are implemented with an EV
weighting factor c = 10, and a temperature decay moderator s = 0.002.

This result has implications, given that in arguably the most challenging setting

(the four-agent penalty game with p = −1000), training agents with c = 10 and s =

0.002 resulted in the joint-best convergence rate (99%). Therefore, while FMQ has

the potential to overcome miscoordination in domains with severe penalties and n > 2

agents, selecting optimal hyperparameters requires considerations regarding the scale

of the rewards, the desired temperature decay factor combined with the MaxTemp,

and the extent to which the EV term should be incorporated into the action selection

mechanism.

This challenge increases significantly for the Climb Game variations, where no sin-

gle hyperparameter configuration can be identified that scales well upon increasing the

penalty values and the number of agents. While we observe 100% convergence on correct

policies in the two-agent, low-penalty, deterministic and partially stochastic versions of

the Climb Game, the percentage of correct policies drops significantly upon increasing

the number of agents and the scale of the penalty values. Furthermore, identifying a

hyperparameter configuration that enables a high-percentage of correct policies across

domain settings is non-trivial.

The heat-maps in Figure 4.16 illustrate the correct run percentages for the three

Climb Game variations in two and four-agents settings with medium sized penalty values.

We observe that the preference in the EV term weighting factor c shifts depending on the

Chapter 4. Evaluating Independent Reinforcement Learning 63

(a) 〈A,A,A,A〉, p = −10 (b) 〈A,A,A,A〉, p = −100 (c) 〈A,A,A,A〉, p = −1000

(d) 〈C,C,C,C〉, p = −10 (e) 〈C,C,C,C〉, p = −100 (f) 〈C,C,C,C〉, p = −1000

Figure 4.15: FMQ Boltzmann selection probabilities for the four-player Penalty
Game. The learners are implemented with an EV weighting factor c = 10, and a

temperature decay moderator s = 0.002. The selection probabilities (averaged over
1,000 training runs) are illustrated for runs that converge upon the joint-actions
〈A,A,A,A〉 or 〈C,C,C,C〉. Convergence requires fewer iterations for larger penalty

values p.

game type and the number of agents. For instance, in the deterministic and partially

stochastic two-agent variations, learners using c = 50 consistently outperform other

settings, regardless of the value chosen for the decay moderator s. However, upon

scaling to the four-agent variations c = 10 outperforms agents using c = 50 and all

other configurations for 0.002 ≤ s < 0.006. Using c = 10 also enables the highest

percentage of correct runs on the four-agent Fully Stochastic Climb Game. However,

for the two-agent variation we observe that the agents prefer larger weighting factors c,

with c = 200 resulting in the highest convergence rates across all s settings. Interestingly

Wei and Luke [209] also choose c = 200 for the Fully Stochastic Climb Game. Finally,

we observe that learners in the two-agent Fully Stochastic Climb Game achieve higher

convergence rates using larger decay moderators s, in contrast to the other setting

(including the penalty game), where the learners generally perform better with lower

decay-moderators s. We are therefore unable to identify a single hyperparameter setting

for FMQ that enables consistent convergence across games.

4.4.3 Recursive Frequency Maximum Q-value

As with all the independent learning approaches discussed in this chapter, for Recur-

sive Frequency Maximum Q-value (RFMQ) considerations are required regarding the

exploration-exploitation trade-off. The success of RFMQ hinges on learners maintain-

ing accurate estimates of the frequency with which Qmax(a) can be observed for each

action a ∈ A for coordinated outcomes. However, depending on the value chosen for

Chapter 4. Evaluating Independent Reinforcement Learning 64

(a) Deterministic, 2-Agents (b) Partially Stochastic, 2-Agents (c) Fully Stochastic 2-Agents

(d) Deterministic, 4-Agents (e) Partially Stochastic, 4-Agents (f) Fully Stochastic 4-Agents

Figure 4.16: FMQ: Comparison of the percentage of runs that converge upon
optimal outcomes for two and four-agent versions of each Climb Game variation.

the frequency learning rate αf , frequent miscoordination can lead to deterioration of

the frequency terms. Therefore, high global exploration can result in RFMQ relying

exclusively on the Q-value estimates. One approach towards mitigating the deterio-

ration of the frequency terms is to choose a sufficiently small frequency learning rate

αf [121]. However, care is required when choosing αf , due to RFMQ implementing

maximum based learning as αf approaches zero, with αf = 0 implementing distributed

Q-learning [121]. To minimize the noise introduced by miscoordination Matignon et

al. [121] use a stationary policy, namely ε-greedy with a fixed ε. As a result we conduct

our hyperparameter sweep for RFMQ using the following parameters combinations:

• ε = {0.2, 0.15, 0.1, 0.005};

• αf = {0.01, 0.05, 0.1, 0.15, 0.2}.

We illustrate the optimal joint-policy percentage for each configuration in the low-

penalty bimatrix games in Figure 4.17. In Sub-Figure 4.17(d) we identify a number

of settings for the Penalty Game (p = −10) where 100% of training runs converged

upon the correct joint policy, only observing a small decrease in percentage of correct

joint-policies when learners use a low exploration rate ε = 0.05.

However, the convergence rates for the three Climb Game variations are below the

results reported in previous work [121, 209]:

Deterministic Climb Game: We are unable to replicate the 100% correct runs for

the Climb Game [121, 209]. For the configuration used by Wei and Luke [209] (ε = 0.1,

αf = 0.05) we observe a convergence rate of 99.6%. We find this number increases to

99.9% for the configuration used by Matignon et al. [121] (αf = 0.01 and ε = 0.05),

who observed 100% correct joint-polices over 500 training runs.

Chapter 4. Evaluating Independent Reinforcement Learning 65

(a) Climb Game (b) Partially Stochastic Climb Game

(c) Fully Stochastic Climb Game (d) Penalty Game

Figure 4.17: RFMQ: Correct run percentages for two-agent, low-penalty
implementations of the penalty game and the three variations of the Climb Game.

Partially Stochastic Climb Game: Matignon et al. [121] report a 100% convergence

rate for the Partially Stochastic Climb Game, while Wei and Luke [209] report 99.95%.

Our convergence rate for the setting used by Wei and Luke [209] (αf = 0.05, ε = 0.05)

is 98.5%. However, we do observe 99.4% correct policies for αf = 0.05 and ε = 0.05.

Fully Stochastic Climb Game: Wei and Luke [209] observe a 87.23% convergence

rate using αf = 0.3, α = 0.03, and ε = 0.1. In contrast we observe a convergence

rate of 37%, with αf = 0.3 leaving the recursive frequency estimates vulnerable towards

miscoordination. Meanwhile, Matignon et al. [121] report a 56% convergence rate using

αf = 0.01 and ε = 0.0.5. Our results in Sub-Figure 4.17(c) are approximately in-line

with those reported by Matignon et al. [121]. We observe an increase in the correct

run percentage for ε = 0.05. While we only observe 52.9% for αf = 0.01, we do obtain

56.9% for αf = 0.1. In Figure 4.18 we show that the convergence rate can be improved

to 64.7% by lowering the exploration rate ε. However, for ε < 0.03 we observe a decrease

in percentage of optimal runs.

Figure 4.19 illustrates the consequences of using a large frequency learning rate on the

Q-values, action evaluations E(a) and frequency estimates F (a). We compare Wei and

Luke’s [209] configuration (α = 0.03, αf = 0.3, ε = 0.1) against the best configuration

encountered during our evaluation (α = 0.1, αf = 0.05, ε = 0.03). For the runs gathered

using the large αf = 0.3 we observe a faster decay of the F (a) values, which drop below

0.5 after only a few episodes. This decay is significantly slower for αf = 0.05, resulting

in E(A) and Q(A) having the highest values on average. Using αf = 0.3 meanwhile

results in action C having the highest action evaluation value.

The convergences rates illustrated in Figures 4.17 and 4.18 introduce a dilemma re-

garding selecting a hyperparameter configuration that achieves an optimal performance

Chapter 4. Evaluating Independent Reinforcement Learning 66

Figure 4.18: RFMQ: Correct run percentages for the two-agent low-penalty Fully
Stochastic Climb Game using frequency learning rate αf = 0.05.

across domains. The Fully Stochastic Climb Game evidently requires an exploration rate

ε < 0.1. In contrast in the remaining games learners achieve their respective highest con-

vergence rates across αf settings using ε = 0.1. However, all three games benefit from a

ε < 0.1 upon increasing the scale of the penalty value, while suffering significant decrease

in the percentage of optimal policies across each hyperparameter combination (Figure

4.20). Furthermore, we observe that upon increasing the penalty values the learners ben-

efit from maintaining an optimistic disposition for longer, via a low frequency learning

rate αf .

In addition, we find that choosing an optimal exploration rate ε depends on the

number of learners present in the system. We demonstrate this by conducting additional

experiments for a range of ε settings within the four-agent, low-penalty variation of each

strategic-form game. For each ε configuration we collect 1,000 runs. Each run consists

of 150,000 iterations, ensuring that the learners are given sufficient time to observe the

optimal joint action. We illustrate the correct run percentages in Figure 4.21.

We therefore find that, with the exception of the Fully Stochastic Climb Game, an

increase in global exploration is required to enable convergence on an optimal joint-

policy. For each game ε = 0.2 results in the highest convergence rate. For the Penalty

Game we observe a 99% convergence rate. In contrast, Matignon et al. [121] achieve

91% in a different version of the four-agent Penalty Game, where a positive reward

only requires over half of the agents to choose either A or C, with the remaining agents

choosing any action other than B. The authors observed this result using fewer iterations

(50,000), and modifying their Qmax initialization, setting the max Q estimates to -100.

RFMQ requires an excessive number of iterations in order to achieve convergence due

to using a fixed exploration rate ε. In Figure 4.22 we illustrate the Qmax(a) estimates

for each action a ∈ A within the four-agent, low-penalty deterministic and Partially

Stochastic Climb Games. We divide 100 runs into correct and incorrect groups depend-

ing on the joint-policy, and subsequently plot the running average Qmax values. We

observe that for the correct runs only a few iterations were required for the learners to

establish the maximum Q-value that could be obtained for the joint-action 〈B,B,B,B〉.
Obtaining Qmax(A) meanwhile requires a large number of iterations on average.

Chapter 4. Evaluating Independent Reinforcement Learning 67

(a) Q-values Config1 (b) Q-values Config2

(c) Action Evaluations Config1 (d) Action Evaluations Config2

(e) Frequency Estimates Config1 (f) Frequency Estimates Config2

Figure 4.19: A comparison of Q-values, action evaluation values E(a) and the
frequency estimates F (a) averaged over 100 runs for RFMQ in the Fully-Stochastic

Climb Game. We compare the configuration used by Wei and Luke [209]
(Config1 = {α← 0.03, αf ← 0.3, ε← 0.1}), against the best configuration encountered

during our evaluation (Config2 = {α← 0.1, αf ← 0.05, ε← 0.03}). In Sub-Figures
4.19(e) and 4.19(f) we observe that the frequency values deteriorate significantly

faster for Config1. As a result action C has the largest action evaluation value E
(Sub-Figure 4.19(c)), which in turn impacts the Q-values (Sub-Figure 4.19(a)).

For the correct runs in the Partially Stochastic Climb Game (Sub-Figure 4.22(c))

the estimate for Qmax(A) only stops increasing after 120,000 episodes. For the runs that

converged upon sub-optimal joint policies meanwhile (Sub-Figures 4.22(b) and 4.22(d))

we observe that on average the joint-action 〈B,B,B,B〉 is also underestimated through-

out each run. As a result the Q-value estimates for actions A and B are underestimated

throughout the incorrect runs (Sub-Figure 4.23(b) and 4.23(d)), while for the correct

runs the Q-value estimate for A rises above C after approximately 40,000 iterations.

This finding is worrying, given that the likelihood of observing the optimal joint-action

in an n-player Climb Game is 1/3n. Therefore, to mitigate an exponential increase in

the iterations needed to observe the optimal joint-action, independent learners clearly

require a more efficient exploration strategy than using a fixed exploration rate.

Chapter 4. Evaluating Independent Reinforcement Learning 68

(a) Climb Game (b) Partially Stochastic Climb Game (c) Penalty Game

Figure 4.20: Correct run percentages for RFMQ in the two-agent, medium-penalty
deterministic and partially stochastic Climb Games, and the Penalty Game.

Figure 4.21: Correct run percentages for four-agent, low-penalty variations of each
strategic form game, when using αf = 0.01.

4.4.4 Hysteretic Q-learning

The Partially and Fully Stochastic Climb Game results from Wei and Luke’s [209] anal-

ysis (Table 4.1) serve as a reminder of hysteretic Q-learners vulnerability towards mis-

leading stochastic rewards. However, for the Partially Stochastic Climb Game the 74%

convergence rate observed by Wei and Luke [209] can be improved by using Boltzmann

exploration. Indeed, seven years prior to Wei and Luke’s [209] publication, Matignon

et al. [121] achieved a convergence rate of 82%, computing the Boltzmann temperature

value using τ = 5000e−0.003t, where t is the current time step, and using learning rates

α = 0.1 and β = 0.01, MinTemp = 2, MaxTemp = 40, and a temperature decay rate

of 0.99. Furthermore, whereas the results achieved by Wei and Luke [209] used a differ-

ent hyperparameter configuration for each strategic-form game (Table 4.3), Matignon

et al.’s [121] configuration also achieves 100% convergence upon correct policies in both

the (deterministic) Climb Game and the Penalty Game with p = −100. Therefore,

the authors are able to overcome relative overgeneralization within the Climb Game

with a relatively low amount of optimism (in contrast to the β = 0.0001 used by Wei

and Luke [209]). As a result we conduct our hyperparameter sweep using Matignon et

al.’s [121] configuration as a guide, using the following hyperparameter combinations:

• β = {0.01, 0.001, 0.0001};

• MaxTemp = {50, 500, 5000};

• s = {0.002, 0.003, 0.004, 0.005, 0.006}.

Chapter 4. Evaluating Independent Reinforcement Learning 69

(a) Deterministic: Optimal Runs (b) Deterministic: Sub-Optimal Runs

(c) Partially Stochastic: Optimal Runs (d) Partially Stochastic: Sub-Optimal Runs

Figure 4.22: RFMQ Four-Agent Deterministic and Partially Stochastic Climb Game
average Qmax for optimal and sub-optimal runs. We observe that for the sub-optimal

runs more steps are required to establish the Q-max for action B.

For the Partially Stochastic Climb Game we identify a number of configurations that

improve upon the percentage of correct joint-policies reported by Matignon et al. [122],

as illustrated in Figure 4.24. The highest convergence rate that we observe is 87%,

obtained by setting β = 0.01, s = 0.002 and MaxTemp = 500. However, the plots in

Figure 4.24 also illustrate the impact of hysteretic Q-learners using too much optimism,

with the majority of runs conducted with β = {0.001, 0.0001} converging upon sub-

optimal joint policies.

Regarding the performance of hysteretic Q-learners in the reaming games, we observe

100% convergence on correct joint-policies within the (deterministic) Climb Game and

the Penalty Game for β = 0.01, s = 0.002 and MaxTemp = 500 (See Figure 4.25).

In the Fully-Stochastic Climb Game meanwhile learners achieve a convergence rate of

over 30% for each configuration s when β = 0.01 and MaxTemp = 500, which is an

improvement upon the 25.58% reported by Wei and Luke [209] (achieved using β = 0.001,

and ε-greedy exploration with a ε decay rate of 0.99).

Upon scaling the penalty values we observe that β = 0.01 provides insufficient opti-

mism for hysteretic Q-learners to prevent relative overgeneralization consistently in the

(deterministic) Climb Game. Indeed, each time the penalty value is increased, more

optimism is required (in the form of lower values for β) in order to prevent relative

overgeneralization (Sub-Figures 4.26(a) and 4.27(a) respectively). Similarly we observe

both an increase in the number of runs that converge upon an optimal joint-policy for

lower β values in the Partially and Fully Stochastic Climb Games, while observing a re-

duction with regards to the highest convergence rates achieved. For the Penalty Game

Chapter 4. Evaluating Independent Reinforcement Learning 70

(a) Deterministic: Optimal Runs (b) Deterministic Sub-Optimal Runs

(c) Partially Stochastic: Optimal Runs (d) Partially Stochastic: Sub-Optimal Runs

Figure 4.23: RFMQ Four-Agent Deterministic and Partially Stochastic Climb Game
average Q-Values for optimal and sub-optimal runs. We observe that for optimal runs

approximately 40,000 iterations are required until Q(A) is larger than Q(B).

(a) MaxTemp = 50 (b) MaxTemp = 500 (c) MaxTemp = 5000

Figure 4.24: Low-penalty two-agent Partially Stochastic Climb Game convergence
rates for hysteretic Q-learning using Boltzmann exploration .

meanwhile we observe a slight lowering of the percentage of optimal joint-policies for

β = 0.01 upon scaling p to −1000 (Sub-Figure 4.27(d)).

Next we consider hysteretic Q-learners scalability with regards to the number of

agents. In the four-agent Penalty Game we identify a multitude of configurations that

result in a 100% convergence rate during the runs conducted, even when confronted with

high penalty values (See Figure 4.28). However, we do observe more consistent conver-

gence across β and decay parameter s settings for the two larger initial temperature

values 500 and 5000.

Convergence in the four-agent Climb Game variations is not as consistent (see Ap-

pendix A). In Table 4.5 we provide a summary of the best performing configurations. In

particular, we observe that in the low and medium reward (deterministic) Climb Game,

Chapter 4. Evaluating Independent Reinforcement Learning 71

(a) Climb Game (b) Fully Stochastic Climb Game (c) Penalty Game

Figure 4.25: Results for the low-penalty two-agent Penalty Game plus the
Deterministic and Fully Stochastic Climb Game variations for hysteretic Q-learning

using Boltzmann exploration (MaxTemp = 500).

(a) Climb Game (b) Partially Stochastic Climb Game

(c) Fully Stochastic Climb Game (d) Penalty Game

Figure 4.26: Repeated bimatrix game convergence rates for hysteretic Q-learning:
medium-penalty and MaxTemp = 500.

relative overgeneralization can be prevented through using low settings for learning rate

β. For the Partially Stochastic Climb Game the convergence rates for the low, medium

and high penalty values decrease to 63.9% and 62.3% and 50.9% respectively, requiring

more optimism than in the two-agent setting. Furthermore, as in the two-agent Partially

Stochastic Climb Game these percentages decrease significantly upon deviating from the

listed hyperparameters.

Therefore the amount of optimism required by hysteretic Q-learners is dependent

on the stochasticity within the reward space, the number of agents, and the scale of

Chapter 4. Evaluating Independent Reinforcement Learning 72

(a) Climb Game (b) Partially Stochastic Climb Game

(c) Fully Stochastic Climb Game (d) Penalty Game

Figure 4.27: Repeated bimatrix game convergence rates for hysteretic Q-learning:
high-penalty and MaxTemp = 500.

(a) MaxTemp = 50 (b) MaxTemp = 500 (c) MaxTemp = 5000

Figure 4.28: Hysteretic Q-learning convergence rates for the four-agent Penalty
Game with high-penalty values.

the penalty values in the presence of the miscoordination and relative overgeneralization

pathologies. Despite these challenges we will return to hysteretic Q-learning in the

chapters that follow. Given that hysteretic Q-learning is a relatively simple concept,

that only introduces one additional hyperparameter, it should not come as a surprise

that it was one of the first independent learning approaches to be scaled to multi-

agent deep reinforcement learning [141]. However, the findings discussed in this section

do illustrates the need for a mechanism capable of adapting the amount of optimism

applied to utility value updates by independent learners, which brings us to leniency.

Chapter 4. Evaluating Independent Reinforcement Learning 73

Deterministic Partially Stochastic Fully Stochastic

Penalty β s MaxTemp % β s MaxTemp % β s MaxTemp %

Low 0.0001 0.002 500 100% 0.001 0.003 5000 63.9% 0.0001 0.004 50 33.8%

Medium 0.0001 0.002 500 95.2% 0.0001 0.002 500 62.3% 0.0001 0.006 50 26.5%

High 0.01 0.002 5000 50.3% 0.01 0.002 5000 50.9% 0.0001 0.005 500 13.7%

Table 4.5: Summary of the hyperparameters for hysteretic Q-learning that led to
the highest correct joint-policy percentages in the four-agent Climb Game variations.

4.4.5 Lenient Multi-Agent Reinforcement Learning

Lenient Multi-Agent Reinforcement Learning 2 (LMRL2) emerged as the most robust

independent learning approach from Wei and Luke’s [209] analysis. However, we observe

that a different leniency moderation factor k was used for each strategic-form game (see

Table 4.3). In Figure 4.29 we illustrate how the choice of leniency moderation factor can

either impede or accelerate an agent’s transition from maximum based to average reward

learner (assuming the same action is chosen at each time-step). Upon closer inspection

we observe that lenient learners implemented with the hyperparameters chosen by Wei

and Luke [209] for the (deterministic) Climb Game, a leniency moderation factor k = 107

combined with a temperature decay rate of ν = 0.995, are maintaining a maximum-

reward learner’s disposition for over 4,000 episodes. Therefore, any success achieved

using this configuration with deterministic reward functions is unlikely to translate to a

stochastic reward space.

Figure 4.29: An illustration of the impact of the moderation factor k on the
leniency function using MaxTemp = 50 and a temperature decay rate ν = 0.995.

The above observation raises the question as to what extent we can identify values

for the leniency moderation factor k that allow LMRL2 to consistently converge upon

the optimal joint-policy across settings. We therefore evaluate the interdependencies

between the following leniency moderation factors k and temperature decay rates ν:

• k = {100, ..., 107};

• ν = {0.99, 0.995, 0.999}.

Using the same maximum and minimum temperature setting as Wei and Luke [209]

(MaxTemp = 50, MinTemp = 2) we are able to replicate the authors’ findings for each

Chapter 4. Evaluating Independent Reinforcement Learning 74

of the tuned hyperparameter configurations. We illustrate the results for our hyperpa-

rameter sweep for the two-agent low-penalty version of each game in Figure 4.30.

(a) Penalty Game (b) Climb Game

(c) Partially Stochastic Climb Game (d) Fully Stochastic Climb Game

Figure 4.30: LMRL2 convergence rates within the two-agent low-penalty versions of
the Climb and Penalty Games.

As with the other algorithms discussed in this chapter, we identify a number of

hyperparameter configurations where LMRL2 achieves a 100% convergence rate within

the Penalty Game when p = −10 (Sub-Figure 4.30(a)). We also verify that LMRL2

achieves the highest convergence rate within the Fully Stochastic Climb Game [209]

(Sub-Figure 4.30(d)). However, while we identify a number of configurations that result

in 100% convergence upon optimal joint-policies within the Deterministic and Partially

Stochastic Climb Games (Sub-Figures 4.30(b) and 4.30(c) respectively), none of these

settings overlap with the best performing configurations for the Fully Stochastic Climb

Game. While LMRL2 appears capable of consistent convergence using lower leniency

moderation factors k and faster decay rates ν, we observe a significant drop in perfor-

mance upon using k ≤ 103. Meanwhile, LMRL2 is more likely to converge in the Fully

Stochastic Climb Game when using lower leniency moderation factors k = {101, 102}.
However, for LMRL2 there does exist a compromise hyperparameter configuration

that enables convergence with a high-likelihood across low-penalty two-agent settings:

k = 105 and ν = 0.995, where we observe 100% convergence within the Penalty Game

and the Partially Stochastic Climb Game, 99% in the Deterministic Climb Game, and

70% in the Fully Stochastic Climb Game. We illustrate the need for this compromise

Chapter 4. Evaluating Independent Reinforcement Learning 75

setting in Figure 4.31, which provides scatter plots illustrating the average Q-values for

each action within the Partially and Fully Stochastic Climb Games. We observe that

using large leniency moderation factors k combined with a slow temperature decay rate

within the two-agent, low reward versions of these games leaves the learners vulnerable

towards the very pathology combination that leniency was designed to address: relative-

overgeneralization combined with misleading stochastic rewards. Specifically, we observe

that LMRL2 agents using large leniency moderation factors k ≥ 4 combined with a slow

temperature decay rate µ = 0.999 overestimate the utility values for the sub-optimal

action B (Sub-Figures 4.31(c) and 4.31(f)). In contrast, we find that faster temperature

decay rates can compensate for larger leniency moderation factors k, with the average

Q-values for the optimal action A being higher than those belonging to actions B and

C (Sub-Figures 4.31(a), 4.31(b), 4.31(d) and 4.31(e)).

(a) PSCG, µ = 0.99 (b) PSCG, µ = 0.995 (c) PSCG, µ = 0.999

(d) FSCG, µ = 0.99 (e) FSCG, µ = 0.995 (f) FSCG, µ = 0.999

Figure 4.31: Average Q-Values for LMRL2 within the low-penalty two-player
Partially and Fully Stochastic Climb Games (PSCG and FSCG respectively) using

temperature decay rates µ = {0.99, 0.995, 0.999}.

However, the compromise setting identified above does not scale with regards to the

number of agents and the size of the penalty values. In the four-agent Penalty Game

for instance we observe that as the scale of the penalty increases, LMRL2 is more likely

to converge upon the optimal joint-policy using a large leniency moderation factors

k = {106, 107} and a slow temperature decay ν = 0.999 (Figure 4.32). Interestingly the

learners also achieve high convergence rates using the fastest temperature decay rate

ν = 0.99. In contrast learners using the medium temperature decay rate ν = 0.995

increasingly fail to converge with larger penalty values p.

We also observe an interesting anomaly for LMRL2 within the four-agent Fully

Stochastic Climb Game. Despite a high penalty the learners converge upon a correct

joint-policy in 90.94% of the runs conducted when using k = 107 and a decay rate of

Chapter 4. Evaluating Independent Reinforcement Learning 76

(a) p = −10 (b) p = −100 (c) p = −1000

Figure 4.32: Performance of LMRL2 within the four-agent Penalty Game.

0.995. In contrast LMRL2 only converges on 56.8% of runs in the equivalent two-agent

setting. A closer look at the Q-values provides answers as to why this is the case (Figure

4.33). In both the two and four agent scenarios the agents initially overestimate the

Q-values for the misleading action B. However, upon sufficiently decaying the tempera-

ture value for action B we observe a rapid decay in the corresponding Q-value. In both

cases the agents subsequently converge upon the optimal action A. However, this also

leads to decay in the temperature value for A, thereby making the learners vulnerable

towards noise introduced through miscoordination. However, the average reward for

the joint-action computed using Equation (4.4) is larger for 〈A,A,A,A〉 than 〈A,A〉, as

evident from the increased separation between the Q-values for A and C in the four-

agent case. Therefore, due to using a modified Boltzmann exploration lenient learners

are more likely to maintain the optimal joint-policy within the four-agent reward space

compared to the two-agent setting.

In summary, we find that with sufficient hyperparameter tuning LMRL2 can achieve

a high convergence rate within the majority of settings used in our evaluation. How-

ever, we are unable to identify a single hyperparameter configuration that results in a

high convergence rate across settings. Furthermore, in Figure 4.33 we observe the de-

terioration of Q-values belonging to actions with insufficient leniency. We hypothesize

that this deterioration is caused by the moving target problem. This finding is wor-

rying, as the deterioration of Q-values eliminates the possibility of learners returning

to a previous equilibrium, should the current one prove sub-optimal. In Chapter 5 we

shall consider approaches towards reducing the likelihood of miscoordination occurring

as lenient learners transition between equilibria.

4.5 Summary

In this chapter we evaluate to what extent existing independent learning approaches

can mitigate the multi-agent learning pathologies outlined in Section 3.1 within four

challenging n-player strategic-form games. More specifically we evaluate decentralized

Q-learning [33], hysteretic Q-learning [120], Frequency Maximum Q-value (FMQ) [90],

Chapter 4. Evaluating Independent Reinforcement Learning 77

(a) Two Agent Q-values (Correct Runs) (b) Four Agent Q-values (Correct Runs)

(c) Two Agent Q-values (Incorrect Runs) (d) Four Agent Q-values (Incorrect Runs)

Figure 4.33: LMRL2 Q-values within the two and four agent high-penalty Fully
Stochastic Climb Game. Due to the reward function we observe a larger separation

between Q-values for actions A and C for correct runs in the four agent setting.

Recursive-FMQ [121] and LMRL2 [209] in extended versions of the well studied Climb

and Penalty games [33, 90]. Below we provide a brief recap of our findings for each

approach:

• Decentralized Q-learning: We find that through hyperparameter tuning de-

centralized Q-learners implemented with Boltzmann exploration can deliver com-

petitive convergence rates within the Penalty Game when the penalty p = −100.

We identify a number of configurations which enable a convergence upon a correct

joint-policy on 99.9% of the 1’000 training runs conducted, exceeding convergence

rates reported in previous literature [90, 120], and providing further evidence that

baseline methods against which novel approaches are benchmarked can be tuned

insufficiently [79, 124]. However, while we do find hyperparameter configurations

for the Climb Game variations that exceed those reported from previous evalu-

ations, decentralized Q-learners are unable to prevent relative overgeneralization

from occurring for the majority of the runs conducted. Finally, we provide evidence

that decentralized Q-learners implemented with low exploration and learning rates

can maintain an optimal joint-policy in the Penalty Game when given a supervised

start during the first iteration.

• FMQ: We find interesting interdependencies between the reward space and the

FMQ Boltzmann exploration method. FMQ requires less iterations to converge

Chapter 4. Evaluating Independent Reinforcement Learning 78

within a four-player penalty game when receiving larger penalty values for mis-

coordination. This is due to the ratio of probabilities produced by Boltzmann

exploration depending on the difference between Q-values. Our finding reiterates

the difficulties involved with tuning the Boltzmann exploration method [?]. How-

ever, while FMQ can overcome miscoordination in the six variations of the Penalty

Game used during our evaluation, the approach does not scale well with regards

to the number of agents and the size of penalty values within the Climb Game

variations.

• RFMQ: For RFMQ we are unable to replicate the results reported by Wei and

Luke [209]. We achieve a significantly lower convergence rate within the Full

Stochastic Climb Game, due to a large frequency learning rate αf leaving the

learners vulnerable towards miscoordination. We do, however, achieve convergence

rates in-line with those reported by Matignon et al. [121] when using a lower fre-

quency learning rate αf , and identify a number of hyperparameter configurations

which improve upon the authors’ results. Finally, RFMQ attempts to mitigate the

alter-exploration problem via choosing a constant low exploration rate ε. However,

we find that for the n-player Climb Game this approach requires an exponential

increase in the number of iterations until the optimal reward is observed as the

number of learners is increased. Nevertheless, we shall come back to Matignon et

al.’s [121] considerations regarding limiting miscoordination in Chapter 5, where

we propose a number of extensions for improving lenient learners.

• Hysteretic Q-learning: In contrast to Wei and Luke [209], and in-line with

Matignon et al. [120], we find that hysteretic Q-learning can benefit from using

Boltzmann exploration strategy. We furthermore identify hyperparameter con-

figurations that improve on the previously reported benchmarks for hysteretic

Q-learning within the Partially Stochastic Climb Game [120, 209]. However, we

are unable to identify a configuration that enables a high convergence rate within

the Fully Stochastic Climb Game.

• LMRL2: We find that out of the approaches evaluated LMRL2 is capable of

delivering the highest convergence rates across domain configurations. However,

hyperparameter configurations that perform well in the deterministic and partially

stochastic Climb Games lead to a poor convergence rate within the Fully Stochastic

Climb Game. Furthermore, we observe that the Q-values belonging to actions

with temperature values that have been cooled down are vulnerable towards the

alter-exploration and moving target problems, especially during periods where the

agents are transitioning between equilibria.

Therefore, we find that LMRL2 remains the most robust out of the independent

learning methods evaluated, even within the extended variations of the four strategic-

form games used by Wei and Luke [209]. However, we observe that LMRL2 is vulner-

able towards the moving-target and alter-exploration problem following the cooling of

Chapter 4. Evaluating Independent Reinforcement Learning 79

temperature values, leading to the deterioration of Q-values. Furthermore, LMRL2 re-

quires a significant amount of hyperparameter tuning, and considerations regarding the

impact of temperature values on the Boltzmann exploration. In Chapter 5 we shall con-

sider approaches toward mitigating the consequent destruction of Q-values, and reducing

the amount of hyperparameter tuning required, by introducing Distributed-Lenient Q-

learning.

Chapter 5

Towards Improved Lenient

Learners

The work presented in this chapter is in preparation for a submission to the Journal

of Machine Learning Research.

In the previous chapter we find that to enable a high convergence rate upon correct

(optimal) joint-policies within repeated n-player strategic-form games, Lenient Multi-

Agent Reinforcement Learning 2 (LMRL2) [209] requires a significant amount of domain

specific hyperparameter tuning. We observe that tuning the decay rate of temperature

values that are used for both lenient Q-value updates and Boltzmann exploration, while

minimizing the impact of the alter-exploration problem, is far from trivial. Further-

more, we hypothesize that for LMRL2 the moving target problem is aggravated by

asynchronous lenient Q-value updates, resulting in lenient learners switching between

equilibria during different time-steps. This leaves lenient learners vulnerable towards

miscoordination, resulting in the destruction of utility values belonging to actions with

insufficient leniency. We hypothesize that lenient learners can benefit from returning to

a previous policy, should the new join-action(s) also prove misleading. In this chapter we

introduce Distributed-Lenient Q-learning (DLQ), a novel leniency algorithm designed to

mitigate the moving-target and alter-exploration problems.

Our contributions can be summarized as follows:

1) We introduce Distributed-Lenient Q-learning (DLQ), a novel variation of leniency,

which splits learning into two distinct phases: (i) An initial maximum reward learner

phase with a uniform action selection policy, during which peaks in the reward space

are discovered; (ii) A greedy action selection phase combined with lenient Q-value up-

dates. Using a greedy action selection policy during the later training phase mitigates

the alter-exploration problem.

2) We introduce synchronized leniency updates, designed to increase the likelihood of

lenient learners switching between equilibria during the same time-steps.

3) We empirically show that synchronized leniency updates can reduce the likelihood of

81

Chapter 5. Towards Improved Lenient Learners 82

miscoordination during phases where lenient learners frequently switch between equilib-

ria. Our empirical evaluation finds that Synchronized DLQ can deliver state of the art

convergence rates in the repeated n-player strategic-form games used for our empirical

evaluation of existing approaches in Chapter 4.

4) We scale DLQ to Markov games, and show that the scaled variation can deliver state

of the art performances in two challenging domains proposed by Wei and Luke [209]:

the Gradient 2 and Relative Overgeneralization 3 games.

5.1 Algorithmic Definition

In Chapter 4 we provide an extensive evaluation of LMRL2 and other independent

learning approaches. We observe that the following weaknesses of LMRL2 must be

addressed to further reduce the likelihood of relative overgeneralization occurring in

domains with a stochastic reward space:

1. Decaying the leniency related temperature values leaves LMRL2 vulnerable to-

wards the alter-exploration problem. As a result utility value estimates for an

optimal action can be significantly underestimated following only a few iterations

of agents performing sub-optimal joint-actions.

2. Even if lenient learners utilize a greedy action selection strategy to mitigate the

alter exploration problem, lenient utility value updates that result in lowering a

utility estimate are conducted asynchronously with a probability z ∈ [0, 1] (See

Equation (3.19)). Therefore we have no guarantee that agents will establish that a

joint-action is suboptimal during the same time-step t. Using the two-agent Fully

Stochastic Climb Game as an example: we shall assume that at time step t for both

agents i: ∀iQi(B) > Qi(A). However, if agent 1 estimates that Q1(A) > Q1(B)

following the subsequent Q-value update, then there is no guarantee that this will

also be the case for agent 2. This can result in a number of iterations where

the joint-action is 〈A,B〉. For actions with insufficient leniency the utility value

estimates will subsequently be destroyed.

DLQ addresses both of these weaknesses. The intuition behind our approach is as

follows: upon conducting an extensive random exploration phase (learning phase 1) to

establish the maximum utility for each action, we employ a greedy exploration method

to address the alter-exploration problem (learning phase 2). Secondly, we introduce

synchronized leniency updates to enable the learners to switch between equilibria during

the same time-step, where the random variable z ∈ [0, 1] from Equation (3.19) used

to determine if updates using a negative δ should be performed is identical for each

agent. Therefore, our approach reduces stochasticity with regards to exploration and

the lowering of Q-values.

Chapter 5. Towards Improved Lenient Learners 83

Temperature values T are not decayed until the random exploration phase is com-

plete, thereby preventing global-exploration from impacting the utility values. There-

fore, DLQ learners must discover the maximum reward for each action during random

exploration. To maximize the likelihood of the agents observing each joint-action com-

bination, DLQ uses a uniform action selection strategy during the random exploration

phase. Furthermore, a learning rate α = 1.0 ensures that Q-value estimates are set to

the maximum reward encountered. During this random exploration phase the learn-

ers are therefore maximum reward learners. Furthermore, to overcome miscoordination

we adopt the policy table from distributed Q-learning [100]. Policy table updates only

occur when the current argmax action no longer has the highest utility value (See Sec-

tion 3.2.2). Therefore DLQ is equal to distributed Q-learning with ε = 1.0 during

learning phase 1.

Following a predefined number of exploratory steps, DLQ switches to an argmax

action selection method using the policy table. During this phase the temperature values

are decayed and utilized by the leniency function to determine the frequency with which

utility values are lowered. However, the leniency function can be synchronised, with

each learner using a random value function with an identical seed value. Furthermore,

during the second learning phase Q-value updates are performed with a more cautious

learning rate α 1.

We note that in stochastic domains a sub-optimal joint-action can yield an identical

maximum reward as an optimal joint-action. We shall encounter two domains with this

property in Section 5.4. As a consequence the random exploration phase can yield a

sub-optimal joint policy consisting of an optimal action being paired with a sub-optimal

action. However, if a utility value update subsequently requires a change to the policy

table for the agent using the optimal action, then, due to the update only considering

maxa∈AQ(a), this action will no longer be considered, thereby reducing the likelihood

of convergence upon the optimal joint-policy. To increase the likelihood of the learners

selecting optimal joint-actions we therefore restrict the policy updates to actions with

the highest utility estimates within a boundary ε. We define Synchronized DLQ in

Algorithm 4.

5.2 Strategic-Form Game Evaluation

We compare the performance of Synchronized DLQ (SDLQ) against Asynchronized DLQ

(ADLQ) for which the synchronized leniency updates are disabled. Therefore, for each

agent the random value z, which determines whether a negative update using δ < 0 takes

place (See Equation (3.19) in Chapter 3), is drawn from random number generators

using distinct seed values. During preliminary trials SDLQ proved robust in each of

the repeated n-player strategic-form games used for the empirical evaluation of existing

approaches in Chapter 4, irrespective of the choice of leniency moderation factor k and

1From this point forward α refers to the learning rate used during learning phase 2.

Chapter 5. Towards Improved Lenient Learners 84

Algorithm 4 Synchronized DLQ for Strategic-Form Games

1: Input: Max steps T , MaxTemp, learning rate α, leniency moderation factor k,
temperature decay rate ν, ExplorationSteps

2: for all a ∈ A do
3: Q(a)← initialize(a), T (a)←MaxTemp, π(a) arbitrarily

4: for t = 0 to T do
5: if t < ExplorationSteps then
6: Choose a using a uniform probability distribution
7: Execute action a and observe r
8: δ ← r −Q(a)
9: if δ > 0 then

10: Q(a)← Q(a) + δ

11: else
12: Choose argmaxa∈A π(a)
13: Execute action a and observe r
14: δ ← r −Q(a)

15: L (at) = exp

(
−1

kTt (at)

)
16: Q(a)←

{
Q(a) + αδ, if δ ≥ 0 or synchronized z > L(a)

Q(a), otherwise

17: T (a)← νT (a)

18: if |Q(argmaxo∈A π(o))−maxo∈AQ(o)| > ε then
19: Select a random action amax ∈ argmaxo∈AQ(o) within bounds ε

20: ∀b ∈ A π(b)←

{
1, if b = amax

0, otherwise

the learning rate α (as we shall discuss below). In contrast, the success of ADLQ

depends on the leniency moderation factor k and the learning rate α. Therefore, we

evaluate DLQ using the following hyperparameter configurations with a temperature

decay rate ν = 0.995 and 500/1000 exploration steps for two and four agent experiments

respectively:

• k = {100, ..., 103};

• α = {0.1, 0.01, 0.001}.

As in previous experiments we gather 1,000 training runs for each hyperparameter

configuration. We illustrate the ADLQ convergence rates for each game in Figure 5.1.

In Section 4.4.5 we observed that even in the low-penalty bimatrix game version of

the Fully-Stochastic Climb Game, LMRL2 converges upon an optimal joint policy on

90.2% of the runs conducted. In contrast, even with the synchronized property disabled,

ADLQ achieves a 100% convergence rate for a number of settings within the two-agent

low penalty Fully Stochastic Climb Game. However, this result only occurs for the

lowest learning rate α = 0.001 (See Sub-Figure 5.1(c)). Furthermore, while we observe a

100% convergence rate for ADLQ in each variation of the remaining games, only SDLQ

Chapter 5. Towards Improved Lenient Learners 85

is able to overcome scaled penalty values and an increase in the number of agents in

the Fully Stochastic Climb Game 2. In both the two and four-agent variation of the

Fully Stochastic Climb Game we observe a further interesting interdependency between

the learning rate α and the scale of the penalty values for ADLQ. For medium penalty

values learners using α = 0.01 achieve the highest convergence rates across each of the

leniency moderation factor k settings. However, upon increasing the penalty values the

learners prefer α = 0.001 (see Figure 5.2).

(a) Climb Game (b) Partially Stochastic Climb Game

(c) Fully Stochastic Climb Game (d) The Penalty Game

Figure 5.1: Convergence rates from ADLQ runs within the two-player low-penalty
Climb and Penalty Games.

In contrast, we observe no significant difference between the results gathered for

SDLQ using α = 0.01 and α = 0.1 across leniency moderation factors k. SDLQ con-

verged on the correct policy on 100% of the runs gathered within each version of the

(deterministic) Climb Game, Partially Stochastic Climb Games and the Penalty Game,

irrespective of the scale of the penalty values and the number of agents. Within the Fully

Stochastic Climb Game meanwhile SDLQ hyperparameter configurations exist for each

domain configuration that result in a 100% convergence rate, with the worst performing

configurations being 99.9%.

To evaluate the extent to which using synchronized updates help when using a larger

learning rate α = 0.01, we gather an additional 100 runs for SDLQ and ADLQ within the

two-agent low-penalty Fully Stochastic Climb Game. We evaluate the actions performed,

Q-values and leniency temperature values T for every episode during each training run.

2See heat-maps in Sections A.6 and A.5.

Chapter 5. Towards Improved Lenient Learners 86

(a) Penalty: Low, Agents: 2 (b) Penalty: Low, Agents: 4

(c) Penalty: Medium, Agents: 2 (d) Penalty: Medium, Agents: 4

(e) Penalty: High, Agents: 2 (f) Penalty: High, Agents: 4

Figure 5.2: Heat-maps illustrating the convergence rates of ADLQ within the six
Fully Stochastic Climb Game variations.

We observe interesting differences between the Q-values learned by each algorithm in

Figure 5.3. Sub-Figure 5.3(a) illustrates the Q-values resulting from synchronous up-

dates, while Sub-Figures 5.3(b) and 5.3(c) illustrate the Q-values for ADLQ runs that

resulted in optimal and suboptimal policies respectively. For both approaches we ob-

serve that the initial utility value estimates for each action are based on the respective

Rmax. For SDLQ (Sub-Figure 5.3(a)) we observe that following the random exploration

phase (500 iterations) the utility values estimate for action B decreases rapidly until

being on par with the utility estimate for action A. From around episodes 2000 to 5000

the Q-values for A and B are closely aligned, with agents switching between the two

equilibria as the temperature values are decayed. Around the 4000 episode mark action

A emerges with a slightly higher average utility estimate. At this point the Q-value for

Chapter 5. Towards Improved Lenient Learners 87

action B is no longer modified, as the learners have no reason to deviate from action

A. The Q-value and temperature value (Figure 5.4) for action C meanwhile remain

unchanged following the exploration phase.

(a) SDLQ (b) ADLQ: Optimal Runs (c) ADLQ: Sub-Optimal Runs

Figure 5.3: Average Q-value comparison for the two-player low-penalty Fully
Stochastic Climb Game. For SDLQ and ADLQ 100 runs were gathered. For ADLQ

we separate optimal and sub-optimal runs prior to plotting the Q-values. We observe
that for SDLQ Q(A) and Q(B) are closely aligned between episodes 2000 and 5000,

before action A emerges with the highest Q-value. For ADLQ the Q-value for action B
is vulnerable towards instances of miscoordination. Furthermore, while Q(C) remains

unchanged for SDLQ following learning phase 1, this is not the case for ADLQ.

(a) SDLQ (b) ADLQ: Optimal Runs (c) ADLQ: Sub-Optimal Runs

Figure 5.4: Average leniency temperature value comparison within the two-player
low-penalty Fully Stochastic Climb Game. For both SDLQ and ADLQ 100 runs were
gathered. For ADLQ we separate optimal and sub-optimal runs. We observe that the

temperature value for action C remains unchanged for SDLQ. For optimal ADLQ
runs meanwhile T (C) approaches 0 for sub-optimal runs, while also being decayed

during optimal runs.

In contrast, even during successful ADLQ runs, the Q-values for actions A and B are

not as closely aligned. We hypothesize that this is due to miscoordination transitions

where one of the agents changes policy before the other. For ADLQ runs we observe that

0.8525% of transitions result in miscoordination between iterations 2000 and 5000. In

contrast, for SDLQ we do not observe any miscoordination. The barcode plots in Figure

5.5 illustrate instances of the joint-actions 〈A,B〉 and 〈B,A〉 over 100 training runs for

SDLQ and ADLQ within the two agent low-penalty Fully Stochastic Climb Game. We

observe that while for SDLQ miscoordination only occurs during the 500 exploration

iterations (learning phase 1), agents using ADLQ often receive penalty values between

iterations 2,000 and 6,000. Furthermore, ADLQ overshoots the average reward for the

joint-action 〈A,A〉, reaching an average utility estimate of 10.0. This explains why

Chapter 5. Towards Improved Lenient Learners 88

ADLQ benefits from using lower learning rates. Action A emerges as the optimal action

on 90% of runs (Sub-Figures 5.3(b)), while being significantly underestimated in the

remaining 10% (Sub-Figures 5.3(c)).

(a) Synchronized-DLQ (b) Aynchronized-DLQ

Figure 5.5: Histograms illustrating the number of occurrences of joint-actions 〈A,B〉
and 〈B,A〉 during 100 SDLQ and ADLQ training runs conducted in the low-penalty
Fully Stochastic Climb Game. For both approaches miscoordination occurs during

Learning Phase 1 (the initial 500 iterations) where random exploration is combined
with maximum reward updates. During Learning Phase 2 we initially observe a

reduction in miscoordination due to learners overestimating the utility of action B
(see Figure 5.3). However, upon learners applying less leniency towards updates

involving B we observe frequent miscoordination for ADLQ. For SDLQ meanwhile we
observe no miscoordination occurrences during Learning Phase 2.

The results for ADLQ can be improved by lowering the learning rate for each agent

to α = 0.001. However, we still observe a significant amount of miscoordination, as the

time-series plot depicting the average rewards for runs conducted with SDLQ (α = 0.1)

and ADLQ (α = 0.001) in Figure 5.6 illustrates. Furthermore, we observe that due to

being able to use a larger learning rate, SDLQ requires fewer iterations to converge on

a joint-policy with an optimal average reward (while achieving the same convergence

rate).

5.3 Learning Complete Policies in Markov Games

The stateless version of DLQ discussed in the previous section is limited to n-player

strategic-form games. In this section we extend DLQ to Markov games with |X | > 1,

where independent learners may encounter an additional pathology: deception. LMRL2

addresses deception by using Average Temperature Folding to prevent a premature tem-

perature decay for actions belonging to frequently visited early transitions in episodic

tasks (see Section 3.2.6). Wei and Luke [209] hypothesize that average temperature

folding allows the learners to remain lenient long enough to allow the average rewards

from follow-on states to be back-propagated. Given that LMRL2 also uses the tempera-

ture value to control the exploration-exploitation trade-off, average temperature folding

should result in the learners remaining exploratory in early states while the optimal

joint-policy in each of the follow-on states is established. Indeed, enabling learners to

Chapter 5. Towards Improved Lenient Learners 89

Figure 5.6: Running average reward comparison (window=1000 iterations) for the
two-player, low-penalty Fully Stochastic Climb Game. We compare SDLQ with

α = 0.1 against ADLQ with α = 0.001. We observe that due to ADLQ using the lower
learning rate there is a significant delay in convergence. Furthermore, we observe a

dip in the average reward due to miscoordination frequently occurring between
iterations 2000 and 5000.

converge on policies that behave correctly within any state x ∈ X of a repeated Markov

game is one of the goals of independent learning, offering advantages such as being de-

ployable from any given initial state within the environment. As a result Wei and Luke

[209] introduce two measures of successful convergence within Markov games:

1. Correct Policies: Agents perform optimally when following the learned policy

from the initial state onwards;

2. Complete Policies: Agents behave optimally within all states x ∈ X .

Therefore, while every complete policy is also a correct policy, a correct policy that

behaves optimally when starting from an initial state x, may behave incorrectly if an

alternative state x′ is designated as the initial state. It is worth noting that for Markov

games with stochastic transitions every correct policy is also a complete policy.

To enable independent learners to converge upon a complete joint-policy, sufficient

exploration is necessary to allow the learners to discover the optimal action for each

state x ∈ X . In this section we shall observe that even domains with a relatively small

state-action space can require a considerable amount of exploration, in order for inde-

pendent learners to consistently converge upon complete policies. However, a misguided

random exploration strategy is likely to result in frequent miscoordination. In contrast,

for repeated Markov games with a significant amount of branching in the state-action

space, a more robust approach towards exploration is to initially remain exploratory in

early states, while acting greedy in follow-on states that lead to absorbing (terminal)

states [209]. Acting greedy in follow-on states allows the learners to limit the noise in-

troduced by miscoordination. Meanwhile, by remaining exploratory in earlier states the

learners are more likely to explore different paths in the state-space. Using a staggered

approach the learners can increasingly apply less exploration from the penultimate states

backwards, until finally acting greedy in the initial state(s).

Chapter 5. Towards Improved Lenient Learners 90

LMRL2 uses the average temperature values within each state to enable a stag-

gered exploration of the state-space [209]. However, in the previous chapter we observed

that tuning the leniency related hyperparameters to enable the temperature values to

correctly balance the exploration-exploitation trade-off is non-trivial. Furthermore, if

we consider the temperature value for action C in Sub-Figure 5.4(b), then we observe

that remaining exploratory to sufficiently decay each of the actions’ values may intro-

duce additional noise through increased global exploration. However, we consider that

a state’s temperature values can provide valuable information regarding whether the

agents have converged within a given state. Instead of using the average temperature

for guidance, we can use the discrete derivative obtained during the temperature up-

dates T (x, u) ← νT (x, u) to estimate if a learner’s policy has converged for a state x.

More formally, we assume that learners have converged in a state x if the exponentially

weighted moving average of the discrete derivate d ← T (x, u)t − T (x, u)t+1 following a

temperature value update,

d(x) = (1.0− τ)× d(x) + τ × d, (5.1)

is below a threshold %. We assume that if d(x) < %, then the learner has either:

i Decayed the temperature values for all actions to the point where the agent has

become an average reward learner;

ii Identified an optimal action, meaning the temperature values for all other actions

are no longer being decayed.

Therefore, iff d(x) < %, then we assume that the learner has converged in state

x. We use a vector C(x) = {1, 0} for each x ∈ X to indicate whether a state x has

converged, where C(x) ← 1 if d(x) < %. Therefore, while the stateless version of DLQ

switches from learning phase 1 to phase 2 after a specified number of iterations, in the

full version of DLQ we use C(x′) from each follow-on state x′ to control this transition.

However, as |X | increases so will the memory requirements for each state x maintaining

the respective set of follow-on states x′. To reduce the memory requirements we resort

to bootstrapping:

C(x) = (1.0− τ)× C(x) + τ × C(xt+1) (5.2)

We therefore switch from explore to exploit, and max reward to lenient learning, if

C(x) > 1.0− ε, for some small ε > 0. We set C(x)← 1 for absorbing (terminal) states

by default. Furthermore, we keep the n exploration steps, allowing agents to establish

the max rewards for non-absorbing states. Therefore, DLQ learners continue to use

a uniform action selection strategy combined with maximum reward learner updates

in frequently visited early transitions until the agents have converged upon a joint-

policy in the direct follow-on states. This process begins in the penultimate states

where actions result in a transition into an absorbing state. However, we consider that

the number of steps required to reach convergence in each of the follow-on states will

Chapter 5. Towards Improved Lenient Learners 91

Algorithm 5 Synchronized DLQ for Markov Games

1: Input: Max steps T , MaxTemp, learning rate α, leniency moderation factor k,
temperature decay rate ν, ExplorationSteps, temperature threshold %, τ .

2: for all x ∈ X and u ∈ U do
3: Q(x, u)← initialize(x, u), T (x, u)←MaxTemp, π(x, u) arbitrarily.

4: d(x)← 0, C(x)← 0.
5: For all non-absorbing states x ∈ X : C(x)← 0.
6: For all absorbing states x ∈ X : C(x)← 1.0.
7: x← initial state
8: for t = 0 to T do
9: if t < ExplorationSteps or C(xt) < 1.0− ε then

10: Choose ut using a uniform probability distribution
11: Execute action ut and observe r and xt+1

12: δ = r + γmaxu∈U Q(xt+1, u)−Q(xt, ut)
13: if δ > 0 then
14: Q(xt, ut)← Q(xt, ut) + δ

15: else
16: Choose argmaxu∈U π(xt, u)
17: Execute action ut and observe r and xt+1

18: δ = r + γmaxu∈U Q(xt+1, u)−Q(xt, ut)

19: L (xt, ut) = exp

(
−1

kTt (xt, ut)

)
20: Q(xt, ut)←

{
Q(xt, ut) + αδ, if δ ≥ 0 or synchronized z > L(xt, ut)

Q(xt, ut), otherwise

21: d← T (xt, ut)− νT (xt, ut)
22: T (xt, ut)← νT (xt, ut)
23: d(xt) = (1.0− τ)× d(xt) + τ × d
24: if d(xt) < % then
25: C(xt+1)← 1.0

26: C(xt) = (1.0− τ)× C(xt) + τ × C(xt+1)

27: if |Q(x, argmaxo∈U π(o))−maxo∈U Q(xt, o)| > ε then
28: Select a random action umax ∈ argmaxo∈U Q(xt, o) within bounds ε

29: ∀b ∈ U π(xt, b)←

{
1, if b = umax.

0, otherwise.

increase exponentially with the size of the state space |X |. Therefore a compromise has

to be made with % as the size of the state space increases, where sufficiently decaying

the temperature value for all follow-on states is infeasible. However, as we shall see in

the next section, the full version of DLQ delivers state-of-the art performances in two

challenging Markov games from Wei and Luke’s [209] empirical evaluation. We outline

the full DLQ algorithm (using synchronized updates) in Algorithm 5.

Chapter 5. Towards Improved Lenient Learners 92

5.4 Addressing Deception in Markov Games

We evaluate the full synchronized and asynchronized versions of DLQ using two Markov

games from Wei and Luke’s [209] empirical evaluation, namely the Relative Overgen-

eralization 3 (RO3) and Gradient 2 games. Both domains, which are outlined below,

proved challenging for LMRL2 (and all other approaches). We choose to conduct our

evaluation using these two games because [209]:

i Despite being designed to address the relative overgeneralization pathology, LMRL2

only converged upon correct and complete joint policies in 73.32% of RO3 runs;

ii While converging upon correct joint-policies in 99.97% of runs conducted for Gra-

dient 2, the percentage of complete policies for LMRL2 was only 5.48%.

We hypothesize that DLQ’s ability to minimize the impact of the alter-exploration

problem, combined with a staggered temperature decay, will result in a higher percentage

of complete and correct joint-policies compared to the results reported for LMRL2.

5.4.1 The Relative Overgeneralization Game

Wei and Luke [209] introduced three games to evaluate the impact of confronting in-

dependent learners with relative overgeneralization and miscoordination pathologies in

domains with multiple states: Relative Overgeneralization 1 – 3 (RO1, RO2 and RO3).

Given that LMRL2, distributed Q-learning, hysteretic Q-learning and SOoN are capa-

ble of delivering high convergence rates on complete policies in RO1 and RO2, we focus

on arguably the most challenging of the three relative overgeneralization games, RO3,

where the learners are confronted with relative overgeneralization through stochastic

state transitions. Figure 5.7 provides a state-transition diagram for RO3 (the illustra-

tion is taken from Wei and Luke [209]). The game consists of three states. Taking actions

in state State 1 yields rewards of 0. However, the joint-action 〈A,A〉 is most likely to

result in the learners progressing to the optimal State 2, from where coordinated actions

〈A,A〉 and 〈B,B〉 can result in a reward of 10. However, pairing action A with B or C

in State 1 has an increased likelihood of the learners transitioning into State 3, which

yields a reward of 0 for each action combination. Joint-actions including C are more

likely to transition to State 2, but still less likely than when the agents choose 〈A,A〉.
All actions taken in State 2 and State 3 result in a transition into an absorbing state.

Therefore, the learners are confronted with a Fully Stochastic Climb Game distributed

over two transitions. We note that in this game every correct solution is a complete

solution.

We first attempt to replicate the results reported for LMRL2 in RO3 using the

following hyperparameter configuration [209]:

• α = 0.1;

• γ = 0.9;

Chapter 5. Towards Improved Lenient Learners 93

Figure 5.7: Relative Overgeneralization 3 State Transition Diagram (Illustration is
taken from Wei and Luke [209]).

• τ = 0.1;

• ν = 0.995;

• MaxTemp = 50.0;

• ω = 0.3;

• k = 1.0;

• Q(x, u)← 0 (the lowest reward in the game);

Interestingly we are unable to replicate the 73.32% convergence rate using this set-

ting. However, upon experimenting with the Q-value initialization we do converge on

70.5% using the authors’ configuration with an initialization of Q(x, u)← 10, the maxi-

mum reward available in the game. Furthermore, we can improve upon the benchmark

reported by Wei and Luke [209] via reducing the size of the learning rate α. In Figure 5.8

we illustrate the correct run percentages for the following hyperparameter combinations:

• Qinit = {0, 10};

• α = {0.001, 0.01, 0.1}.

Figure 5.8: Correct run percentage for LMRL2 hyperparameter configurations
within RO3. We compare Q-value initialization and learning rate α.

Chapter 5. Towards Improved Lenient Learners 94

As in previous evaluation we conduct 1,000 training runs per hyperparameter config-

uration. Each training run consists of 30,000 iterations [209]. We observe a significant

increase in the number of optimal (correct) joint-policies upon initializing the Q-values

with 10.0. Furthermore, we observe an increase in the percentage of correct runs for

Qinit = 10 upon lowering α. Interestingly lowering the α-values proves detrimental

when Qinit = 0. A closer look at the average Q-values helps shed light on why this is

the case. We conduct 100 additional training runs for each of the following learning

rate configurations, storing the Q-values for each iteration: α = {0.1, 0.01, 0.001}. In

Figure 5.9 we plot the average Q-values. We observe that when starting with the Q-

values at 0, the learners require multiple iterations for the utility value estimates for

each action in State 1 to increase. Using a low leniency moderation factor k = 1.0 the

learners’ leniency decreases rapidly, explaining why the Q-value for action C frequently

emerges as the highest utility value estimate. In Figure 5.10 meanwhile we observe that

agents using a Q-value initialization of 10.0 benefit from a low learning rate α, with the

Q-values from each action being more closely aligned during the initial learning phase

of each training run. Due to using a lower learning rate miscoordination has less of

an impact, meaning the Q-values for each action remain closely aligned until action A

emerges as the optimal action (Sub-Figure 5.10(c)).

(a) α = 0.1 (b) α = 0.01 (c) α = 0.001

Figure 5.9: Q-value comparison for RO3 State 1 using LMRL2 with Qinit = 0.

We conduct a second hyperparameter sweep with α = 0.001 to evaluate the impact of

using a different leniency moderation factors k = {1, 10, 100, 1000}, while also gathering

Synchronized DLQ (DLQ) and Asynchronized DLQ (ADLQ) runs. For DLQ we use

the following hyperparameters: ε ← 0.001, ExplorationSteps ← 500, τ = 0.1 and

%← 0.0001. We illustrate the results from our runs in 5.11. We find for all approaches

the highest convergences rates are achieved when using a low leniency moderation factor

k = 1, although the drop off in convergence rate is less noticeable for SDLQ and ADLQ.

Furthermore, there appears to be no significant difference between the convergence rates

of ADLQ and SDLQ across settings. Nevertheless, both approaches outperform LMRL2

for each hyperparameter configuration.

To summarize, we identify a number of hyperparameter configurations for LMRL2

that improve upon the 73.32% convergence rate reported by Wei and Luke [209] for

RO3, while observing even higher convergence rates for SDLQ and ADLQ. However, we

consider that the high convergence rate for DLQ should not come as a surprise. Upon

Chapter 5. Towards Improved Lenient Learners 95

(a) Correct α = 0.1 (b) Correct α = 0.01 (c) Correct α = 0.001

(d) Incorrect α = 0.1 (e) Incorrect α = 0.01 (f) Incorrect α = 0.001

Figure 5.10: Q-value comparison for RO3 State 1 using LMRL2 with Qinit = 10.

Figure 5.11: Hyperparameter sweep for LMRL2, SDLQ and ADLQ within RO3.
For LMRL2 Q-values are initialized to 10. The learning rate α = 0.001.

using distributed Q-learning’s approach towards solving miscoordination in State 2, the

learners are essentially being confronted with a less punishing variation of the Fully

Stochastic Climb Game. We now move on to the more challenging Gradient 2 game,

where, due to an increase in the number of states, considerations are required regarding

the number of iterations that learners should be given in order to maximize the likelihood

of converging upon a complete joint policy.

5.4.2 The Gradient Game

Wei and Luke [209] introduced two variations of the gradient game. Given that Gradi-

ent 1 can be mastered by maximum based learners (e.g., distributed Q-learning) [209],

we focus on the more challenging version, Gradient 2, which confronts learners with the

deception, stochastic reward and miscoordination pathologies. In Figure 5.12 we provide

a state-transition diagram of Gradient 2 (the illustration is taken from Wei and Luke

[209]). The game is deceptive in that State 3 and State 4 have higher local rewards com-

pared to State 2, but ultimately lead to poor future rewards, when compared against the

Chapter 5. Towards Improved Lenient Learners 96

optimal average reward of 30 that can be obtained in State 5. Furthermore, the learners

are also confronted with miscoordination in states 5 through 13. All approaches from

Wei and Luke’s [209] empirical evaluation, with the exception of LMRL2, struggled to

converge upon correct solutions in Gradient 2. However, while 99.97% of the LMRL2

runs converged on correct joint-policies, only 5.48% of runs were complete [209]. One

potential explanation for the low percentage of complete runs is that Gradient 2 has a

larger state-action space compared to the other games used during the authors’ empiri-

cal evaluation. Therefore, adequately decaying the temperature values to obtain average

utility estimates within each state necessitates that each state-action pair is visited a suf-

ficient number of times. However, if the learners converge before this can happen, then

the average utility values will never be computed for the less optimal paths, preventing

a complete joint-policy from being learnt.

Figure 5.12: State transition diagram for the Gradient 2 game (Illustration is taken
from Wei and Luke [209]).

We hypothesize that applying DLQ with a sufficiently small % to Gradient 2 will

result in an increase of the number of complete runs compared to the 5.48% achieved

by LMRL2. However, during preliminary trials we observed that an excessive number

of iterations are required in order to obtain C(x) > 1 − ε for all x ∈ X . Increasing %

Chapter 5. Towards Improved Lenient Learners 97

meanwhile comes at the cost of a decrease in the number of complete solutions. We con-

sequently evaluate SDLQ and ADLQ using the following hyperparameter configuration,

with each training run consisting of 240,000 iterations:

• k ← 1.0;

• α← 0.01;

• δ ← 0.995;

• τ ← 0.1;

• γ ← 0.9;

• MaxTemp← 50;

• ExplorationSteps← 1, 000;

• ε← 0.001;

• %← 0.0001.

We gather 1,000 training runs for each SDLQ and ADLQ hyperparameter configu-

ration, resulting in the following convergence rates:

Approach Complete Run % Correct Run %

ADLQ 83.7% 99.6%

SDLQ 48.3% 49.3%

Table 5.1: Asynchronized DLQ (ADLQ) and Synchronized DLQ (SDLQ) complete
and correct run percentages in the Gradient 2 game.

Upon investigating why SDLQ is outperformed by ADLQ, we find that reward spaces

exist where the stochasticity introduced by asynchronous updates is beneficial. We

observe that State 5 in particular represents a challenge for SDLQ, due to the maximum

reward for each of the four joint-actions being 32. Each learner’s policy table will be

set to the first action executed that results in the max reward in State 5 during the

random exploration phase. Due to the action space only consisting of two actions, if

the agents happen to lock onto one of the sub-optimal joint-actions 〈A,B〉 or 〈B,A〉,
then they enter a cycle of switching between incompatible-actions once synchronized

leniency updates are enabled. As a result SDLQ learners begin alternating between

sub-optimal joint-actions 〈A,B〉 and 〈B,A〉. Upon subsequently repeatedly receiving a

miscoordination penalty the learners significantly underestimate the utility available for

each action in State 5.

The barcode plot in Sub-Figure 5.13(a) illustrates the consequences of agents locking

onto sub-optimal joint-actions in State 5. The plot depicts occurrences of miscoordina-

tion in State 5 for 100 training runs, with dark red lines indicating that the learners’

Chapter 5. Towards Improved Lenient Learners 98

joint-policy is set to either 〈A,B〉 or 〈B,A〉. We observe that the behaviour remains

consistent throughout each training run following the initial exploration phase. In Sub-

Figure 5.13(b) we illustrate the joint-actions in State 5 for an incorrect SDLQ run,

depicting π1(5, A) and π2(5, B), the policy table entries for State 5 and actions A and

B for Agent 1 and Agent 2 respectively. We observe that the changes to π1(5, A) and

π2(5, B) are synchronized following an initial exploration phase. In Figure 5.14 we illus-

trate the Q-values learned as a consequence of not being able to escape this sub-optimal

joint-action spiral. ADLQ meanwhile can escape this cycle through agents unilaterally

changing their policy table following an asynchronous leniency update. In theory the

bounded policy table updates using ε should allow SDLQ to escape this cycle. The

use of policy table updates conditioned on ε allowed DLQ learners to master a similar

dilemma in State 1 of RO3, where following learning phase 1 ∀x ∈ X and ∀u ∈ U
Q(x, u) = 10.0. In RO3 we observe a gradual decrease in the convergence rate upon

lowering ε. However, we have been unable to identify an ε setting that improves the

convergence rate for SDLQ in Gradient 2. We therefore leave this for future work.

(a) Miscoordination Iterations (b) Policy Plot

Figure 5.13: Sub-Figure (a) illustrates instances of miscoordination (dark red)
within 100 runs gathered for SDLQ within State 5 of Gradient 2. We observe that
learners who end up with a sub-optimal joint-policy during the initial exploration

phase often fail to escape the miscoordination cycle. Sub-Figure (b) depicts π1(5, A)
and π2(5, B), the policy table entries for State 5 and actions A and B for Agent 1 and

Agent 2 respectively, from a failed SDLQ Gradient 2 run. We note that the line for
Agent 1 is obscured by Agent 2 for the majority of the run, illustrating that the

learners switch between sub-optimal joint-action during identical time-steps.

To summarize, while the percentage of correct joint-policies for ADLQ of 99.6% is

below the 99.97% achieved by LMRL2, the 83.7% complete policies represents a signif-

icant improvement. We hypothesize that these results could be further improved upon

through additional hyperparameter tuning.

5.5 Summary

In the previous chapter we observed that even for approaches designed to mitigate the

moving target problem (e.g., LMRL2), one agent unilaterally changing their policy can

have catastrophic consequences. For example, in the Fully Stochastic Climb Game the

Chapter 5. Towards Improved Lenient Learners 99

(a) Correct Runs (b) Incorrect Runs

Figure 5.14: SDLQ Q-values from Gradient 2 State 5 for actions A and B averaged
over 59 and 41 correct and incorrect runs respectively. Note: the Q-values for action
A are obscured by B due to the Q-values being averaged over multiple runs. For

correct runs we observe that SDLQ is able to estimate the average utility for
coordinated actions involving actions A and B. For incorrect runs meanwhile the

Q-value for each action is significantly underestimated.

moving target problem can lead to miscoordination transitions, resulting in convergence

upon a sub-optimal joint-policy due to relative overgeneralization.

In this chapter we introduce Distributed-Lenient Q-learning (DLQ) to address the

noise introduced by miscoordination through using two learning phases: a maximum

learner phase (learning phase 1), where a uniform action selection policy is utilized

to establish the maximum reward available for each action, followed by a greedy ac-

tion selection phase (learning phase 2) where the learners use lenient utility value

updates, allowing the agents to gradually establish the average utility for each equi-

librium, while minimizing the impact of the moving target problem. In addition, we

introduce synchronized leniency updates, which help eliminate miscoordination in a

number of challenging domains, including the Fully Stochastic Climb Game [90], a do-

main, where a large number of previous independent learning approaches have struggled

[90, 120, 121, 145, 148, 149, 209]. We also find that DLQ achieves state of the art

performances in two challenging Markov games: Gradient 2 and Relative Overgeneral-

ization 3 [209].

However, we note that the synchronization property upon which SDLQ relies may

not always be guaranteed, in particular within asymmetric games. We leave the iden-

tification of conditions where synchronisation is guaranteed to occur for future work.

Furthermore, the assumption of agents operating on synchronized parameters based

on discrete time-scales does not hold in many real world domains, which is the con-

dition necessary for performing synchronized leniency updates. Due to the absence of

standards for learning agents, in many multi-agent systems the assumption of all algo-

rithms being implemented with the same hyperparameter configurations, or even using

the same algorithm, is unrealistic [91]. Furthermore, in our evaluation of the Markov

game Gradient 2 we have seen that reward spaces exist where performing synchronized

updates can actually reduce the likelihood of independent learning agents converging

Chapter 5. Towards Improved Lenient Learners 100

upon an optimal joint-policy. SDLQ’s struggles within Gradient 2 serve as a reminder

that, even for simple strategic-form and low-dimensional Markov games with a small

state-space, finding a silver bullet approach for independent learning is non-trivial. Fi-

nally, the excessive number of iterations required by ADLQ to achieve the above result

is concerning, especially given that Gradient 2 only consists of 26 state-action pairs.

Our findings therefore reiterate that independent learning often requires compromises

in order to achieve convergence within a reasonable amount of time. It should not come

as a surprise therefore that similar compromises are required when scaling leniency to

multi-agent deep reinforcement learning, which is the focus of the next chapter.

Chapter 6

Lenient Multi-Agent Deep

Reinforcement Learning

This chapter is based on the following publication:

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani, Lenient Multi-

Agent Deep Reinforcement Learning, In Proceedings of the 17th International Con-

ference on Autonomous Agents and MultiAgent Systems, 2018, pp. 443–451.

The field of deep reinforcement learning has seen a great number of successes in

recent years. Deep reinforcement learning agents have been shown to master numer-

ous complex problem domains, ranging from computer games [98, 129, 160, 203] to

robotics tasks [37, 63]. Much of this success can be attributed to using convolutional

neural network (ConvNet) architectures as function approximators, allowing reinforce-

ment learning agents to be applied to domains with large or continuous state and action

spaces [98, 129, 160, 203].

Recently the sub-field of multi-agent deep reinforcement learning has received an

increased amount of attention. However, as we have seen in the previous chapters,

multi-agent reinforcement learning is challenging even in stateless environments with

only two implicit learning agents, lacking the convergence guarantees present in most

single-agent learning algorithms [15, 101, 122, 137, 199]. One of the key challenges

faced within multi-agent reinforcement learning is the moving target problem: Given an

environment with multiple agents whose rewards depend on each others’ actions, the

difficulty of finding optimal policies for each agent is increased due to the policies of the

agents being non stationary [15, 17, 25, 66, 78, 90, 137, 157, 174, 181, 194, 197, 200].

Due to the moving target problem reinforcement learning algorithms that converge

in a single agent setting (e.g., decentralized Q-learning) often fail in fully-cooperative

multi-agent systems with independent learning agents that require implicit coordination

strategies. For decentralized learning agents using deep Q-network architectures the

moving target problem represents a significant challenge [46, 66, 141]. ConvNets are

101

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 102

often trained to approximate policy and value functions through sampling past state

transitions stored by the agent inside an experience replay memory D (See Chapter 2,

Section 2.6) [98, 129, 160, 203]. However, the use of an experience replay memory in a

multi-agent deep reinforcement learning context amplifies the moving target problem,

as a large proportion of the state transitions stored can become deprecated [46, 66, 141].

In Chapter 4 we evaluated a number of independent learning approaches designed

to overcome the moving target problem (among other multi-agent learning pathologies).

However, we observed that even for approaches designed to mitigate the moving target

problem, one learner unilaterally changing their policy can result in convergence upon

a sub-optimal joint-policy. We introduced Distributed-Lenient Q-learning (DLQ) and

synchronized leniency updates in Chapter 5 to mitigate the noise introduced by misco-

ordination. However, many multi-agent systems lack standards for learning agents [91].

Therefore, we cannot assume that independent learners can operate on synchronized

discrete time-scales, which is the condition necessary for performing synchronized le-

niency updates. Furthermore, we have seen that reward spaces exist where performing

synchronized updates can actually reduce the likelihood of independent learning agents

converging upon an optimal joint-policy (see Chapter 5, Section 5.4.2). Nevertheless, in

our empirical evaluation lenient learners have proven more robust than other methods

towards multi-agent learning pathologies. This raises the question whether leniency can

be applied to domains with a high-dimensional state space.

In this chapter we show how lenient learning can be scaled to multi-agent deep

reinforcement learning via modifying the DQN [129] and Double-DQN (DDQN) [203]

architectures, introducing the Lenient (Double) Deep Q-Network (LDQN and LDDQN

respectively). To recap: lenient learners store temperature values that are associated

with state-action pairs [17, 18, 148, 149]. Each time a state-action pair is visited the

respective temperature value is decayed, thereby decreasing the amount of leniency

that the agent applies when performing a policy update for the state-action pair. The

stored temperatures enable the agents to gradually transition from optimists to average

reward learners for frequently encountered state-action pairs, allowing the agents to

outperform optimistic and maximum based learners in environments with misleading

stochastic rewards. In this chapter we extend this idea to multi-agent deep reinforcement

learning by storing leniency values in the experience replay memory D, and demonstrate

empirically that lenient multi-agent deep reinforcement learning agents learning implicit

coordination strategies in parallel are able to converge on the optimal joint policy in

difficult coordination tasks with stochastic rewards.

Omidshafiei et al. [141] recently applied concepts from hysteretic Q-learning to

multi-agent deep reinforcement learning. In Section 6.5 we empirically evaluate our

Lenient DDQN against Hysteretic Double Deep Q-Networks (HDDQNs). We find that

while HDDQNs and LDDQNs deliver comparable performances in deterministic reward

domains, HDDQNs struggle in fully cooperative domains that yield stochastic rewards.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 103

However, we demonstrate that the performance of HDDQNs within stochastic reward

environments can be improved with a scheduled approach.

Our main contributions can be summarized as follows.

1) We introduce Lenient (Double) Deep Q-Network, which includes two extensions to

leniency: a retroactive temperature decay schedule (TDS) that prevents premature tem-

perature cooling, and a T (o)-Greedy exploration strategy, where the probability of the

optimal action being selected is based on the average temperature of the current state.

When combined, TDS and T (o)-Greedy exploration encourage exploration until average

rewards have been established for later transitions.

2) We show the benefits of using TDS over average temperature folding (ATF).

3) We provide an extensive analysis of leniency-related hyperparameters for LDDQN.

4) We propose a scheduled -H(D)DQN that applies less optimism towards state transi-

tions near terminal states compared to earlier transitions within the episode.

5) We introduce two extensions to the Cooperative Multi-agent Object Transportation

Problem (CMOTP) [26], including narrow passages that test the agents’ ability to mas-

ter fully-cooperative sub-tasks and stochastic rewards.

6) We empirically evaluate our proposed LDDQN and SHDDQN against standard HD-

DQNs using the extended versions of the CMOTP. We find that while HDDQNs perform

well in deterministic CMOTPs, they are significantly outperformed by SHDDQNs in do-

mains that yield a stochastic reward. Meanwhile LDDQNs comprehensively outperform

both approaches within the stochastic reward CMOTP.

6.1 Related Work

A number of methods have been proposed to help deep reinforcement learning agents

converge towards an optimal joint policy in cooperative multi-agent tasks. Gupta et

al. [66] evaluated policy gradient, temporal difference error, and actor critic methods on

cooperative control tasks that included discrete and continuous state and action spaces,

using a decentralized parameter sharing approach with centralized learning. More recent

successful approaches have focused on centralized training for decentralized execution

(CTDE) [157, 174, 181], e.g., decomposing a team value function into agent-wise value

functions through the use of a value decomposition network architecture [181]. Others

have attempted to help concurrent learners converge through identifying and deleting

obsolete state transitions stored in the replay memory. For instance, Foerster et al. [46]

used importance sampling as a means to identify outdated transitions while maintaining

an action observation history of the other agents. Our current work does not require the

agents to maintain an action observation history. In contrast, our current work focuses on

independent learning using optimistic agents within environments that require implicit

coordination. This decentralized approach to multi-agent systems offers advantages such

as speed, scalability and robustness [122]. The motivation for using implicit coordination

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 104

is that communication can be expensive in practical applications, and requires efficient

protocols [8, 122, 188].

As we have seen in the previous chapters, hysteretic Q-learning is a form of optimistic

learning with a strong empirical track record in fully-observable multi-agent reinforce-

ment learning [9, 122, 217]. Originally introduced to prevent the overestimation of

Q-values in stochastic games, hysteretic learners use two learning rates: a learning rate

α for updates that increase the value estimate (Q-value) for a state-action pair and a

smaller learning rate β for updates that decrease the Q-value [120]. However, empirical

evaluations (including our own in Chapter 4) have shown that while hysteretic learners

perform well in deterministic environments, they tend to perform sub-optimally in games

with stochastic rewards [120, 209]. Hysteretic learners’ struggles in these domains have

been attributed to learning rate β’s inter-dependencies with other agents’ exploration

strategies [122].

As we have established, lenient learners present an alternative to the hysteretic

approach, and have empirically been shown to converge towards superior policies in

stochastic games with a small state space. Similar to the hysteretic approach, lenient

agents initially adopt an optimistic disposition, before gradually transforming into av-

erage reward learners. Lenient methods have received criticism in the past for the time

they require to converge [209], the difficulty involved in selecting the correct hyperpa-

rameters, the additional overhead required for storing the temperature values, and the

fact that they were originally only proposed for matrix games [122]. We have encoun-

tered these challenges ourselves in Chapters 4 and 5. However, given their success in

tabular settings, we here investigate whether leniency can be applied successfully to

multi-agent deep reinforcement learning.

6.2 Independent Learner Baseline

As in the previous chapter our proposed algorithms are based upon Q-learning, a form

of temporal difference reinforcement learning that is well suited for solving sequential

decision making problems that yield stochastic and delayed rewards [11, 207]. Since

interesting sequential decision problems frequently have a large state-action space, Q-

values are often approximated using function approximators such as tile coding [11]

or neural networks [203] (see Section 2.6). Furthermore, learners in this context are

frequently confronted with partial observability, where Q-values are computed for ob-

servations o ∈ O rather than states x ∈ X . The algorithms evaluated in this chapter

are extensions of the Double-DQN (DDQN) introduced by Van Hasselt et al. [203]

(see Section 2.6). Each agent i is implemented with a ConvNet trained to approximate

Q-values for observation-action pairs: Qi : Oi × Ui → R [104]. The learning agents i

are also each implemented with a separate experience replay memory Di used to store

state transitions as tuples (oi, ui, ri, o
′
i), consisting of an observation oi, action ui, the

resulting observation o′i and the immediate reward ri. To ensure obsolete transitions are

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 105

eventually discarded experience replay memories Di are implemented as First-In First-

Out (FIFO) queues [104]. The network parameters θi are trained using Adam [94] on

the mean squared Bellman residual with the expectation taken over state transitions

uniformly sampled from an experience replay memory Di [106, 129] (Eq. (2.10)) 1.

We now proceed to describe our main algorithmic contributions of this chapter. First

we detail our proposed Lenient (Double) Deep Q-Network, and thereafter we discuss our

extension to hysteretic deep multi-agent reinforcement learning, which we call Scheduled

Hysteretic (Double) Deep Q-Network.

6.3 Lenient Deep Q-Learning

In this section we outline how leniency can be scaled to multi-agent deep reinforcement

learning. Given that learners situated within environments with a high-dimensional

state-space will rarely receive identical observations, we shall first consider how the tem-

perature values required by lenient learners can be maintained for semantically similar

observations. We subsequently consider how the leniency function can be combined with

the (Double) DQN architecture, and propose two extensions to leniency: a retroactive

temperature decay schedule (TDS) designed to prevent premature temperature cooling,

and a T (o)-Greedy exploration strategy, where the probability of the optimal action

being selected is based on the average temperature of the current state. We find that

when these two extensions are combined, TDS and T (o)-Greedy exploration encourage

exploration until average rewards have been established for later transitions.

6.3.1 Clustering Observations using Autoencoders

In environments with a high-dimensional or continuous observation space, a tabular

approach for mapping each possible observation-action pair to the temperature values

required by lenient learners is no longer feasible. Binning can be used to discretize low-

dimensional continuous observation-spaces, however, further considerations are required

regarding mapping semantically similar observations to a decaying temperature value

used by lenient learners when dealing with high-dimensional domains, such as image

observations. Recently, researchers studying the application of count based exploration

to deep reinforcement learning have developed interesting solutions to this problem.

For example, Tang et al. [190] used autoencoders to automatically cluster states in a

meaningful way in challenging benchmark domains, including Montezuma’s Revenge.

An autoencoder is a neural network architecture frequently used to learn reduced

encodings for high-dimensional data [133, 204]. Architectures used to learn encodings

for images typically consist of convolutional, dense, and transposed convolutional layers,

which are trained to minimize the expected reconstruction error [133]. For instance, in

a deep reinforcement learning context an autoencoder can be trained to compress and

reconstruct the observations stored in the agent’s experience replay memory D [189].

1For simplicity we drop the subscript i denoting an individual agent going forward.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 106

The autoencoder subsequently serves as a pre-processing function g : O → RD, with a

dense layer consisting of D neurons with a saturating activation function (e.g. a Sigmoid

function) at the centre. SimHash [30], a locality-sensitive hashing (LSH) function, can

be applied to the rounded output of the dense layer to generate a hash-key φ for an

observation o. This hash-key is computed using a constant n ×D matrix A with i.i.d.

entries drawn from a standard Gaussian distribution N (0, 1) as

φ (o) = sgn
(
Ag (o)

)
∈ {−1, 1}n, (6.1)

where g (o) is the autoencoder pre-processing function, and n controls the granularity

such that higher values yield a more fine-grained clustering [190].

We use a dictionary to map each 〈φ (o) , u〉 pair encountered to a temperature value,

where the hash-keys are computed using Tang et al.’s [190] approach described above.

If a temperature value does not yet exist for 〈φ (o) , u〉 within the dictionary, then an

entry is created, setting the temperature value equal to MaxTemperature. Otherwise

the current temperature value is used and subsequently decayed, to ensure the agent

will be less lenient when encountering a semantically similar observation in the future.

6.3.2 Combining Leniency with Deep Q-Network Architectures

Combining leniency with (D)DQNs requires careful considerations regarding the use of

the temperature values, in particular when to compute the amount of leniency that

should be applied to a state transition that is sampled from the replay memory. In our

initial trials we used leniency as a mechanism to determine which transitions should

be allowed to enter the replay memory D. However, this approach led to poor results,

presumably due to the agents developing a bias during the initial random exploration

phase where transitions were stored indiscriminately. To prevent this bias we use an

alternative approach where we compute and store the amount of leniency L(ot, ut) at

time t within the transition tuple stored in D: (ot, ut, rt+1, ot+1, L (ot, ut)t). The amount

of leniency that is stored is determined by the current temperature value T associated

with the hash-key φ (o) for observation o and the selected action u:

L (o, u) = 1− exp
(
− k × T (φ (o) , u)

)
. (6.2)

We note that the leniency function in Equation (6.2) differs from the one used by LMRL2

(Equation (3.18) in Chapter 3). While the equation used by LMRL2 requires large

temperature values for learners to maintain a lenient disposition, e.g., using an initial

MaxTemp = 50, Equation (6.2) is sensitive towards temperature values within the

range [0, 1], a property that will prove valuable for our T (o)-Greedy exploration strategy,

which we outline in Sub-Section 6.3.4 below. As in standard deep Q-learning the aim is to

minimize the loss function of Equation (2.10), with the modification that for each sample

j chosen from the replay memory for which the leniency conditions of Equation (6.2)

are not met, are ignored.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 107

Algorithm 6 Application of temperature decay schedule (TDS)

1: Upon reaching a terminal state do
2: n← 0, steps← steps taken during the episode
3: for j = steps to 0 do
4: if βnTt (φ (oj) , uj) < νt then
5: Tt+1 (φ (oj) , uj)← βnTt (φ (oj) , uj)
6: else
7: Tt+1 (φ (oj) , uj)← νt

8: n← n+ 1

9: ν ← µ ν

6.3.3 Retroactive Temperature Decay Schedule

Throughout initial trials we found that temperatures decay rapidly for state-action pairs

belonging to challenging sub-tasks in the environment, even when using Average Tem-

perature Folding (ATF) (See Equation (3.27) in Chapter 3). In order to prevent this

premature cooling of temperatures we developed an alternative approach using a pre-

computed temperature decay schedule (TDS) β0, . . . , βn with a step limit n. The values

for β are computed using an exponent ρ which is decayed using a decay rate d:

βn = exp (ρ× dt) (6.3)

for each t, 0 ≤ t < n.

Upon reaching a terminal state the temperature decay schedule is applied to sam-

ples j as outlined in Algorithm 6. The aim is to ensure that temperature values of

observation-action pairs encountered during the early phase of an episode are decayed

at a slower rate than those close to the terminal state transition (line 4). We find that

maintaining a slow-decaying maximum temperature ν (lines 5-7) that is decayed using

a decay rate µ helps stabilize the learning process when ε-Greedy exploration is used.

Without the decaying maximum temperature the disparity between the low tempera-

tures in well explored areas and the high temperatures in relatively unexplored areas has

a destabilizing effect during the later stages of the learning process. Furthermore, for

agents also using the temperature values to guide their exploration strategy (see below),

ν can help ensure that the agents transition from exploring to exploiting within reason-

able time. The decaying maximum temperature ν is used whenever T (φ (oj) , uj) > νt,

or when agents fail at their task in environments where a clear distinction can be made

between success and failure. Therefore TDS is best suited for domains that yield sparse

large rewards.

Applying the TDS after the agents fail at a task could result in the repeated decay

of temperature values for state-action pairs leading up to a sub-task. For instance, the

sub-task of transporting a heavy item of goods through a doorway may only require a

couple of steps for trained agents who have learned to coordinate. However, untrained

agents may require thousands of steps to complete the task. If a time-limit is imposed

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 108

Figure 6.1: Lenient-DQN Architecture. We build on the standard DQN architec-
ture [203] by adding a lenient loss function (top right, see Section 6.3.2). Leniency
values are stored in the replay memory along with the state transitions; we cluster se-
mantically similar states using an autoencoder and SimHash (bottom left), and apply
our retroactive temperature decay schedule (TDS, Algorithm 6). Actions are selected
using the T (o)-Greedy exploration method.

for the agents to deliver the goods, and the episode ends prematurely while an attempt

is made to solve the sub-task, then the application of the TDS will result in the rapid

decay of the temperature values associated with the frequently encountered state-action

pairs. We resolve this problem by setting the temperature values Tt (φ (oj) , uj) > ν to

ν at the end of incomplete runs instead of repeatedly decaying them, thereby ensuring

that the agents maintain a lenient disposition towards one another.

6.3.4 T (o)-Greedy Exploration

During initial trials we encountered the same problems discussed by Wei and Luke [209]

regarding the selection of the temperature moderation factor for the Boltzmann action

selection strategy. This led to the development of a more intuitive T (o)-Greedy explo-

ration method where the average temperature value T (ot) ∈ (0, 1] for a state ot replaces

the ε in the ε-Greedy exploration method. An exponent ξ is used to control the pace

at which the agents transition from explorers to exploiters. The agent therefore selects

action u = argmaxu∈U Q (ot, u) with a probability 1−T (ot)
ξ and a random action with

probability T (ot)
ξ. We outline our lenient deep Q-learning architecture in Figure 6.1.

6.4 Scheduled Hysteretic Deep Q-Learning

In Section 4.4.4, we observe that hysteretic learners are vulnerable towards stochastic

rewards. Similarly we find that hysteretic deep Q-learning architectures can be lead

astray in deceptive domains with with stochastic rewards. To address this weakness

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 109

in domains where agents receive sparse stochastic terminal rewards we introduce the

Scheduled Hysteretic (Double) Deep Q-Network, which we outline below.

To recap, hysteretic Q-learning [120] is an algorithm designed for decentralised learn-

ing in deterministic multi-agent environments, and which has recently been applied to

multi-agent deep reinforcement learning as well [141]. Two learning rates are used, α

and β, with β < α. The smaller learning rate β is used whenever an update would

reduce a Q-value. This results in an optimistic update function which puts more weight

on positive experiences, which is shown to be beneficial in cooperative multi-agent set-

tings. As we have observed in our experiments in Section 4.4.4, given a spectrum with

traditional Q-learning at one end and maximum-based learning, where negative experi-

ences are completely ignored, at the other, then hysteretic Q-learning lies somewhere in

between depending on the value chosen for β.

Hysteretic deep Q-learning architectures compute the error δj for each (o, u, o′, r)

sample j within the batch drawn from D:

δj ≡
(
r + γQ(o′j , argmax

u∈U
Q(o′j , u; θt); θ

′
t)−Q (oj , uj ; θt)

)
, (6.4)

and subsequently, scale each δj < 0 using learning rate β:

δ′j ≡

δj , if δ ≥ 0.

βδj , otherwise.
(6.5)

before computing the loss:

Lt (θt) = E(o,u,o′,r)∼U(D)

[(
δ′
)2]

. (6.6)

For hysteretic deep Q-learning we therefore define β as the percentage of the learning

rate α. Hysteretic Q-learners are known to converge towards sub-optimal joint poli-

cies in environments that yield stochastic rewards [120]. However, drawing parallels

to lenient learning, where it is desirable to decay state-action pairs encountered at the

beginning of an episode at a slower rate compared to those close to a terminal state, we

consider that the same principle can be applied to hysteretic Q-learning. Subsequently

we implemented Scheduled Hysteretic (Double) Deep Q-Network (Scheduled-HDDQN)

with a pre-computed learning rate schedule β0, . . . , βn where βn is set to a value ap-

proaching α, and for each βt, 0 ≤ t < n, we have βt = dn−tβn using a decay coefficient

d ∈ (0, 1]. The state transitions encountered throughout each episode are initially stored

within a queue data-structure. Upon reaching a terminal state the n state-transitions

are transferred to D as (ot, ot+1, rt+1, ut, βt) for t ∈ {0, . . . , n}. Our hypothesis is that

storing β values that approach α for state-transitions leading to the terminal state will

help agents converge towards optimal joint policies in environments that yield sparse

stochastic rewards.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 110

D Z O N E

G

A A

(a) Original

D Z O N E

G

A A

(b) Narrow-Passage

D Z 1 D Z 2

G

A A

(c) Stochastic Reward

Figure 6.2: CMOTP Layouts

6.5 Empirical Evaluation

6.5.1 CMOTP Extensions

We subjected our agents to a range of Coordinated Multi-Agent Object Transportation

Problems (CMOTPs) inspired by the scenario discussed in Buşoniu et al. [26], in which

two agents are tasked with delivering one item of goods to a drop-zone within a grid-

world. The agents must first exit a room one by one before locating and picking up the

goods by standing in the grid cells on the left and right hand side. The task is fully

cooperative, meaning the goods can only be transported upon both agents grasping the

item and choosing to move in the same direction. Both agents receive a positive reward

after placing the goods inside the drop-zone. The actions available to each agent are

to either stay in place or move left, right, up or down. We subjected our agents to

three variations of the CMOTP, depicted in Figure 6.2, where each A represents one

of the agents, G the goods, and DZONE / DZ mark the drop-zone(s). The layout

in sub-figure 6.2(a) is a larger version of the original CMOTP [26], while the layout

in sub-figure 6.2(b) introduces narrow-passages between the goods and the drop-zone,

testing whether the agents can learn to coordinate in order to overcome challenging

areas within the environment. The layout in sub-figure 6.2(c) tests the agents’ response

to stochastic rewards. Drop-zone 1 (DZ1) yields a reward of 0.8, whereas drop-zone 2

(DZ2) returns a reward of 1 on 60% of occasions and only 0.4 on the other 40%. DZ1

therefore returns a higher reward on average, 0.8 compared to the 0.76 returned by DZ2.

A slippery surface can be added to introduce stochastic state transitions to the CMOTP,

a common practice within grid-world domains where the agents move in an unintended

direction with a predefined probability at each time-step.

6.5.2 Setup

We conduct evaluations using a Double-DQN architecture [203] as basis for the algo-

rithms. The Q-network consists of 2 convolutional layers with 32 and 64 kernels respec-

tively, a fully connected layer with 1024 neurons and an output neuron for each action.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 111

The agents are fed a 16 × 16 tensor representing a gray-scale version of the grid-world

as input. We use the following pixel values to represent the entities in our grid-world:

Agent1 = 250, Agent2 = 200, Goods = 150 and Obstacles = 50. Adam [94] is used

to optimize the networks. Our initial experiments are conducted within a noise free

environment, enabling us to speed up the testing of our LDDQN architecture without

having to use an autoencoder for hashing; instead we apply python’s xxhash. We sub-

sequently test the LDDQN with the autoencoder for hashing in a noisy version of the

stochastic reward CMOTP. The autoencoder consists of 2 convolutional Layers with 32

and 64 kernels respectively, 3 fully connected layers with 1024, 512, and 1024 neurons

followed by 2 transposed convolutional layers. For our Scheduled-HDDQN agents we

pre-compute β0 to n by setting βn = 0.9 and applying a decay coefficient of d = 0.99

at each step t = 1 to n, i.e. βn−t = 0.99tβn, with βn−t being bounded below at 0.4.

We summarize the remaining hyper-parameters in Table 6.1. In Section 6.7 we include

an extensive analysis of tuning the leniency related hyper-parameters. We note at this

point that each algorithm used the same learning rate α specified in Table 6.1.

Component Hyper-parameter Setting

DDQN-Optimization

Learning rate α 0.0001

Discount rate γ 0.95

Target network sync. steps 5000

Experience Replay Memory D Size 250,000

ε-Greedy Exploration

Initial ε value 1.0

ε Decay factor 0.999

Minimum ε Value 0.05

Leniency

MaxTemperature 1.0

Leniency Modification Coefficient k 2.0

TDS Exponent ρ -0.01

TDS Exponent Decay Rate d 0.95

Initial Max Temperature Value ν 1.0

Max Temperature Decay Coefficient µ 0.999

ATF Fold-in Constant τ 0.2

Autoencoder
HashKey Dimensions n 64

Sigmoidal units in the dense layer D 512

Table 6.1: Hyper-parameters

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 112

Original CMOTP Results

Hyst. β = 0.5 Hyst. β = 0.6 Hyst. β = 0.7 Hyst.β = 0.8 LDDQN ATF LDDQN TDS

SPE 36.4 36.1 36.8 528.9 36.9 36.8

CSP 92% 92% 92% 91% 92% 92%

SPR 1,085,982 1,148,652 1,408,690 3,495,657 1,409,720 1,364,029

Table 6.2: Original CMOTP Results, including average steps per episode (SPE)
over the final 100 episodes, coordinated steps percentages (CSP) over the final 100

episodes, and the average steps per training run (SPR).

6.6 Deterministic CMOTP Results

6.6.1 Original CMOTP

The CMOTP represents a challenging fully cooperative task for parallel learners. Past

research has shown that deep reinforcement learning agents can converge towards coop-

erative policies in domains where the agents receive feedback for their individual actions,

such as when learning to play pong with the goal of keeping the ball in play for as long

as possible [187]. However, in the CMOTP feedback is only received upon delivering

the goods after a long series of coordinated actions. No immediate feedback is available

upon miscoordination. When using uniform action selection the agents only have a 20%

chance of choosing identical actions per state transition. As a result thousands of state

transitions are often required to deliver the goods and receive a reward while the agents

explore the environment, preventing the use of a small replay memory where outdated

transitions would be overwritten within reasonable time. As a result standard Double-

DQN architectures struggle to master the CMOTP, failing to coordinate on a significant

number of runs, even when confronted with the relatively simple original CMOTP.

We conduct 30 training runs of 5000 episodes per run for each LDDQN and HDDQN

configuration. Lenient and hysteretic agents with β < 0.8 fare significantly better than

the standard Double-DQN, converging towards joint policies that were only a few steps

shy of the optimal 33 steps required to solve the task. Lenient agents implemented with

both ATF and TDS deliver a comparable performance to the hysteretic agents with

regards to the average steps per episode and the coordinated steps percentage measured

over the final 100 steps of each episode (Table 6.2, left). However, both LDDQN-ATF

and LDDQN-TDS average a statistically significant higher number of steps per training

run compared to hysteretic agents with β < 0.7. For the hysteretic agents we observe a

statistically significant increase in the average steps per run as the values for β increase,

while the average steps and coordinated steps percentage over the final 100 episodes

remain comparable.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 113

6.6.2 Narrow Passage CMOTP

Lenient agents using ATF struggle significantly within the narrow passage CMOTP, as

evident from the results listed in Table 6.3. We find that the average temperature values

cool off rapidly over the first 100 episodes within the Pickup and Middle compartments,

as illustrated in Figure 6.3. Meanwhile agents using TDS manage to maintain sufficient

leniency over the first 1000 episodes to allow rewards to propagate backwards from the

terminal state. We conduct ATF experiments with a range of values for the fold-in

constant τ = {0.2, 0.4, 0.8}, but always witness the same outcome. Slowing down the

temperature decay would help agents using ATF remain lenient for longer, with the side-

effects of an overoptimistic disposition in stochastic environments, and an increase in

the number of steps required for convergence if the temperatures are tied to the action

selection policy. Using TDS meanwhile allows agents to maintain sufficient leniency

around difficult sub-tasks within the environment while being able to decay temperatures

belonging to later transitions at a faster rate. As a result agents using TDS can learn

the average rewards for state transitions close to the terminal state while remaining

optimistic for updates to earlier transitions.

Figure 6.3: Average temperature per compartment

The success of HDDQN agents within the narrow-passage CMOTP depends on the

value chosen for β. Agents with β > 0.5 struggle to coordinate, as we observed over a

range of β values (exemplar given in Table 6.3). The only agents that converge upon

a near optimal joint-policy are those using LDDQN-TDS and HDDQN (β = 0.5). We

perform a Kolmogorov-Smirnov test with a null hypothesis that there is no significant

difference between the performance metrics for agents using LDDQN-TDS and HDDQN

(β = 0.5). We fail to reject the null hypothesis for average steps per episode and

percentage of coordinated steps for the final 100 episodes. However, HDDQN (β =

0.5) average significantly less steps per run while maintaining less overhead, replicating

previous observations regarding the strengths of hysteretic agents within deterministic

environments.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 114

Narrow-Passage CMOTP Results

Hyst. β = 0.5 Hyst. β = 0.6 LDDQN ATF LDDQN TDS

SPE 45.25 704.9 376.2 45.7

CSP 92% 89% 90% 92%

SPR 1,594,968 4,736,936 3,950,670 2,104,637

Table 6.3: Narrow-Passage CMOTP Results, including average steps per episode
(SPE) over the final 100 episodes, coordinated steps percentages (CSP) over the final

100 episodes, and the average steps per training run (SPR).

6.7 Stochastic CMOTP Results

In the stochastic setting we are interested in the percentage of runs for each algorithm

that converge upon the optimal joint policy, which is for the agents to deliver the goods

to dropzone 1, yielding a reward of 0.8, as opposed to dropzone 2 which only returns an

average reward of 0.76. We conduct 40 runs of 5000 episodes for each algorithm.

As discussed in Section 6.6, HDDQN agents using β > 0.7 frequently fail to co-

ordinate in the deterministic CMOTP. Therefore, setting β = 0.7 is the most likely

candidate to succeed at solving the stochastic reward CMOTP for standard HDDQN

architectures. However, agents using HDDQN (β = 0.7) only converge towards the

optimal policy on 42.5% of runs. The scheduled -HDDQN perform significantly better

achieving a 77.5% optimal policy rate. Furthermore, the SHDDQN performs well when

an additional funnel-like narrow-passage is inserted close to the dropzones, with 93% suc-

cess rate. The drop in performance upon removing the funnel suggests that the agents

are led astray by the optimism applied to earlier transitions within each episode, pre-

sumably around the pickup area where a crucial decision is made regarding the direction

in which the goods should be transported.

LDDQN using ε-Greedy exploration perform similar to SHDDQN, converging to-

wards the optimal joint policy on 75% of runs. Meanwhile LDDQNs using T (o)-Greedy

exploration achieve the highest percentages of optimal joint-policies, with agents con-

verging on 100% of runs for the following configuration: k = 3.0, d = 0.9, ξ = 0.25

and µ = 0.9995, which will be discussed in more detail below. However, the percentage

of successful runs is related to the choice of hyperparameters. We therefore include an

analysis of three critical hyperparameters:

• The leniency modification coefficient k, that determines the speed at which agents

transition from optimist to average reward learner (sub-figure 6.4(a)). Values: 1,

2 and 3;

• The TDS decay-rate d which controls the rate at which temperatures are decayed

n-steps prior to the terminal state (sub-figure 6.4(b)). Values: 0.9, 0.95 and

0.99;

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 115

(a) Leniency Schedules (b) Temperature Decay Schedules

Figure 6.4: TMC and TDS schedules used during analysis.

• T (o)-Greedy exploration exponent ξ, controlling the agent’s transition from ex-

plorer to exploiter, with lower values for ξ encouraging exploration. Values: 0.25,

0.5 and 1.0.

We conduct 40 simulation runs for each combination of the three variables. To

determine how well agents using LDDQN can cope with stochastic state transitions

we add a slippery surface where each action results in a random transition with 10%

probability. The highest performing agents use a steep temperature decay schedule

that maintains high temperatures for early transitions (d = 0.9 or d = 0.95) with

temperature modification coefficients that slow down the transition from optimist to

average reward learner (k = 2 or k = 3), and exploration exponents that delay the

transition from explorer to exploiter (ξ = 0.25 or ξ = 0.5). This is illustrated in the

heat-maps in Figure 6.5. When using a TDS with a more gradual incline (d = 0.99)

the temperature values from earlier state transitions decay at a similar rate to those

near terminal states. In this setting choosing larger values for k increases the likelihood

of the agents converging upon a sub-optimal policy prior to having established the

average rewards available in later states, as evident from the results plotted in sub-figure

6.5(c). Even when setting the exploration exponent ξ to 0.25 the agents prematurely

transition to exploiter while holding an overoptimistic disposition towards follow-on

states. Interestingly, when k < 3 agents often converge towards the optimal joint-policy

despite setting d = 0.99. However, the highest percentages of optimal runs (97.5%)

are achieved through combining a steep TDS (d = 0.9 or d = 0.95) with the slow

transition to average reward learner (k = 3) and exploiter (ξ = 0.25). Meanwhile, the

lowest percentages for all TDSs result from insufficient leniency (k = 1) and exploration

(ξ = 1.0).

Using one of the best-performing configurations (k = 3.0, d = 0.9 and ξ = 0.25)

we conduct further trials analyzing the agents’ sensitivity to the maximum temperature

decay coefficient µ. We conduct an additional set of 40 runs 2 where µ was increased from

0.999 to 0.9995. Combining T (o)-Greedy with the slow decaying µ = 0.9995 results in

the agents spending more time exploring the environment at the cost of requiring longer

2The runs were conducted without the slippery surface.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 116

(a) d = 0.9 (b) d = 0.95 (c) d = 0.99

Figure 6.5: Analysis of the LDDQN hyperparameters. The heat-maps show the
percentage of runs that converged to the optimal joint-policy (darker is better).

to converge, resulting in an additional 1,674,106 steps on average per run. However, the

agents delivered the best performance, converging towards the optimal policy on 100%

runs conduct.

Continuous State Space Analysis: Finally, we show that semantically similar state-

action pairs can be mapped to temperature values using SimHash in conjunction with

an autoencoder. We conduct experiments in a noisy version of the stochastic CMOTP,

where at each time step every pixel value is multiplied by a unique coefficient drawn

from a Gaussian distribution X ∼ N (1.0, 0.01). A non-sparse tensor is used to represent

the environment, with background cells set to 1.0 prior to noise being applied.

Agents using LDDQNs with xxhash converge towards the sub-optimal joint policy

after the addition of noise as illustrated in Figure 6.6, with the temperature values de-

caying uniformly in tune with ν. LDDQN-TDS agents using an autoencoder meanwhile

converged towards the optimal policy on 97.5% of runs. It is worth pointing out that

the autoencoder introduces a new set of hyperparameters that require consideration,

including the size D of the dense layer at the centre of the autoencoder and the dimen-

sions k of the hash-key, raising questions regarding the influence of the granularity on

the convergence. We leave this for future work.

Figure 6.6: Noisy Stochastic CMOTP Average Reward

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 117

6.8 Summary

Our work demonstrates that leniency can help multi-agent deep reinforcement learning

agents solve a challenging fully cooperative CMOTP using noisy and high-dimensional

images as observations. Having successfully merged leniency with a Double-DQN ar-

chitecture raises the question regarding how well our approach will work with other

state of the art components. We have recently conducted preliminary stochastic re-

ward CMOTP trials with agents using LDDQN with a Prioritized Experience Replay

Memory [160]. Interestingly, the agents consistently converged towards the sub-optimal

joint policy. We plan to investigate this further in future work. In addition, our research

raises the question how well our extensions would perform in environments where agents

receive stochastic rewards throughout the episode. To answer this question we plan to

test our LDDQN within a hunter prey scenario where each episode runs for a fixed

number of time-steps, with the prey being re-inserted at a random position each time

it is caught [122]. Furthermore, we plan to investigate how our LDDQN responds to

environments with more than two agent by conducting CMOTP and hunter-prey scenar-

ios with four agents. Finally, the fact that leniency was originally proposed to prevent

relative overgeneralization from occurring raises the research question to what extent

LDDQN can mitigate this pathology within a high-dimensional temporally extended

environments. We shall answer this question in the next chapter.

To summarize the contributions discussed in the current chapter:

1) We have shown how leniency can be applied to multi-agent deep reinforcement learn-

ing, enabling agents to converge upon optimal joint policies within fully-cooperative

environments that require implicit coordination strategies and yield stochastic rewards.

2) We find that LDDQNs significantly outperform standard and scheduled-HDDQNs

within environments that yield stochastic rewards, replicating findings from tabular set-

tings.

3) We introduced two extensions to leniency, including a retroactive temperature decay

schedule that prevents the premature decay of temperatures for state-action pairs and

a T (o)-Greedy exploration strategy that encourages agents to remain exploratory in

states with a high average temperature value.

4) Our LDDQN hyperparameter analysis revealed that the highest performing agents

within stochastic reward domains use a steep temperature decay schedule that main-

tains high temperatures for early transitions combined with a temperature modification

coefficient that slows down the transition from optimist to average reward learner, and

an exploration exponent that delays the transition from explorer to exploiter.

5) We demonstrate that CMOTP [26] can be used as a benchmarking environment

for multi-agent deep reinforcement learning, requiring reinforcement learning agents to

learn fully-cooperative joint-policies from processing high-dimensional and noisy image

observations.

Chapter 6. Lenient Multi-Agent Deep Reinforcement Learning 118

6) Finally, we introduce two extensions to the CMOTP. First, we include narrow pas-

sages, allowing us to test lenient agents’ ability to prevent the premature decay of tem-

perature values. Our second extension introduces two dropzones that yield stochastic

rewards, testing the agents’ ability to converge towards an optimal joint-policy while

receiving misleading rewards.

Chapter 7

Q-learning with Negative Update

Intervals

The work presented in the first half of this chapter is in preparation for a submission

to the Journal of Machine Learning Research, while the second half is based on the

following publication:

Gregory Palmer, Rahul Savani, and Karl Tuyls, Negative Update Intervals in Deep

Multi-Agent Reinforcement Learning, In Proceedings of the 18th International Con-

ference on Autonomous Agents and MultiAgent Systems, 2019, pp. 43–51.

In the previous chapter we evaluate the extent to which lenient (and modified hys-

teretic) deep Q-learners can overcome the moving target problem, stochasticity (with

regards to rewards and transitions) and deception within fully-cooperative multi-agent

object transportation problems. However, as we have seen in Chapter 3 (Section 3.1),

the multi-agent reinforcement learning literature provides a rich taxonomy of learning

pathologies that cooperative independent learners must overcome to converge upon an

optimal joint-policy [122]. In particular, while searching for an optimal joint-policy,

the actions of independent learners influence each others’ search space. This can lead

to action shadowing, where miscoordination due to sub-optimal joint-policies results in

utility values of optimal actions being underestimated [50, 147]. In Chapters 4 and 5

we study the above pathologies and a type of action shadowing called relative overgen-

eralization in n-player strategic form games and low-dimensional Markov games with

a small state space. Relative overgeneralization can occur when pairing an indepen-

dent learner’s available actions with arbitrary actions by the other agents results in a

sub-optimal action having the highest utility estimate [147]. As a result, independent

learners can be drawn to sub-optimal but wide peaks in the reward search space due to

a greater likelihood of achieving collaboration there [147].

In our Climb Game [33, 90] evaluations in Chapter 4 we observe that relative over-

generalization presents a challenge for independent learners, even in repeated n-player

119

Chapter 7. Q-learning with Negative Update Intervals 120

single-stage strategic-form games. We find that lenient and hysteretic Q-learners main-

taining an optimistic disposition can prevent relative overgeneralization within n-player

deterministic Climb Game variations [33]. However, a significant amount of hyper-

parameter tuning is required to increase convergence rates upon adding partially and

fully-stochastic rewards. In Chapter 5 we show that lenient learners can in fact mas-

ter these domains, but only after further modifying the leniency algorithm to mitigate

the noise introduced by miscoordination, resulting in our Distributed-Lenient Q-learning

(DLQ).

However, while DLQ is well suited towards overcoming the above pathologies in

repeated n-player single-stage strategic-form games and low-dimensional Markov games

with a small state space, in Chapter 6 we observe that compromises are necessary to scale

leniency to high-dimensional domains with a large state-space, resulting in our Lenient

(Double) Deep Q-Network (LDDQN). Our evaluations in the previous chapter focus on

mitigating deep Q-learners’ amplified moving-target problem in domains with stochastic

rewards and transitions. Therefore, for both lenient and hysteretic deep Q-learners

questions remain regarding scalability, i.e. can they overcome the same pathologies (in

particular relative overgeneralization) in complex domains that suffer from the curse of

dimensionality and require reasoning over long time horizons?

To answer this question we evaluate the ability of leniency and hysteretic Q-Learning

to overcome the pathologies outlined in a temporally extended, partially observable

version of the Climb Game [33, 90]. We call this game the Apprentice Firemen Game

(AFG). Indeed, to date the majority of multi-agent deep reinforcement learning research

on independent learners focuses on stochasticity and mitigating an amplified moving

target problem resulting from obsolete state transitions being stored inside experience

replay memories D [46, 141, 144, 221]. The AFG, meanwhile, allows us to study the

robustness of independent learning algorithms simultaneously facing all of the above

pathologies in a system suffering from the curse of dimensionality.

Within the AFG agents must make an irrevocable decision that will determine the

outcome of an episode. We find that while hysteretic and lenient learners deliver promis-

ing performances in layouts where agents can observe each others’ irrevocable decision,

both algorithms converge upon sub-optimal joint policies when the same irrevocable

decision is made in seclusion.

To help independent learners overcome the outlined pathologies in this challeng-

ing setting, we introduce a novel approach where agents maintain expanding intervals

estimating the min and max of cumulative reward distributions for state-transition tra-

jectories ending without miscoordination. The intervals determine which trajectories

are stored and used for sampling, allowing independent learners to discard trajectories

resulting in miscoordination. This reduces the impact of noisy utility values occurring

in cooperative games with high punishment for uncoordinated behavior, increasing the

likelihood of average utility values being established for sequences of actions leading to

Chapter 7. Q-learning with Negative Update Intervals 121

coordinated outcomes. We call this approach NUI-DDQN (Negative Update Intervals

Double-DQN).

Our main contributions in this chapter can be summarized as follows.

1) We design a new environment that simultaneously confronts independent learners

with all four of the mentioned pathologies. The environment is based on the Climb

Game, which has been used to study relative overgeneralization and stochastic rewards.

We embed the Climb Game in a temporally-extended gridworld setting, that we call

the Apprentice Firemen Game (AFG), in which two fireman need to coordinate to ex-

tinguish a fire. Stochastic transitions can be added by introducing randomly moving

civilians who obstruct paths.

2) We empirically evaluate hysteretic and lenient approaches in two AFG layouts (Fig-

ure 7.4). Layout 1 examines whether the pathologies can be overcome when independent

learners can observe each other while making an irrevocable choice that determines the

outcome of an episode. In contrast, layout 2 requires independent learners to inde-

pendently make the same irrevocable decision in seclusion. We find that independent

learners predominately converge upon superior joint-policies in layout 1, providing evi-

dence that independent learners can implicitly learn to avoid miscoordination when able

to observe each other during transitions that determine an episode’s outcome. Layout 2

poses a challenge for existing approaches. Lenient learners in particular face the fol-

lowing dilemma: remain lenient and be led astray by misleading stochastic rewards, or

estimate average utility values and succumb to relative overgeneralization due oscillating

utility values caused by stochastic transitions.

3) We introduce Q-learning with Negative Update Intervals (Q-learning with NUI),

a novel independent learning approach capable of converging on optimal joint-polices

within the n-player repeated strategic-form games used for our empirical re-evaluations

in Chapter 4. Furthermore, we identify a hyperparameter configuration for Q-learning

with NUI that enables a high convergence rate across settings.

4) We introduce NUI-DDQN, a multi-agent deep reinforcement learning algorithm which

discards episodes yielding cumulative rewards outside the range of expanding intervals.

These intervals are maintained for sequences of transitions (trajectories) equivalent to

actions from cooperative games. NUI-DDQN reduces the noise introduced by punishing

values resulting from miscoordination to utility estimates, allowing independent learn-

ers to prevent relative overgeneralization and the alter-exploration problem. NUI-DDQN

consistently converges upon the optimal joint-policy in both layouts for deterministic and

stochastic rewards.

This chapter is structured as follows. First, we outline and evaluate Q-learning with

Negative Update Intervals in Section 7.1 within the n-player strategic-form games used

for our empirical evaluations conducted in Chapters 4 and 5. We identify hyperparam-

eter settings that enable Q-learning with NUI to deliver performances comparable with

Synchronized-DLQ within the Penalty Game and Climb Game variations. Following

our n-layer strategic-form game evaluation we scale Q-learning with NUI to NUI-DDQN

Chapter 7. Q-learning with Negative Update Intervals 122

in Section 7.3. We subsequently outline our Apprentice Firemen Game in Section 7.4,

before evaluating the learning dynamics of NUI, lenient and hysteretic deep Q-learning

architectures in Section 7.5. Finally, under Future Work in Section 7.6 we propose ex-

tensions to NUI-DDQN, and discuss interesting preliminary findings regarding agents

learning nonverbal communication in the AFT, before concluding with our chapter sum-

mary.

7.1 Q-learning with Negative Update Intervals

We introduce Q-learning with Negative Update Intervals (Q-learning with NUI) within

the context of repeated n-agent single-stage strategic-form team-games. We define a

negative update as a Q-value update that lowers a utility value estimate, i.e. an update

performed using a temporal difference error (TD-Error) δ < 0. As evident from the util-

ity value update equations for the stateless versions of hysteretic Q-learning and leniency

(Equations (3.9) and (3.19) respectively in Chapter 3), both approaches reduce the ex-

tent to which negative updates lower utility value estimates over time. However, both

approaches apply their update rules to negative TD-Errors indiscriminately. Meanwhile,

for Q-learning with NUI we make the following assumption:

Assumption 1. Within a number of team-games independent learners may compute a

δ < 0 due to feedback received for joint-actions that resulted in:

i miscoordination (type 1);

ii coordinated behaviour where the utility is currently overestimated (type 2).

While this is a strong assumption, we can provide a number of examples from multi-

agent reinforcement learning literature where Assumption 1 holds, including the stochas-

tic Climb Game variations[90], as well as the Relative Overgeneralization 3 and Gradi-

ent 2 [209] games used for our evaluations in Chapters 4 and 5. Neither leniency nor

hysteretic Q-learning attempt to distinguish between the two types of δ outlined above.

In Chapter 5 we proposed SDLQ as a method for reducing the likelihood of independent

learners performing updates using Type 1 TD-Errors. However, while SDLQ delivers

a robust performance across the various Climb Game variations in our empirical eval-

uation, we observe that reward spaces exist where DLQ performs sub-optimally with

synchronized updates (see Section 5.4.2 in Chapter 5). Maximum based learners, mean-

while, avoid negative updates altogether by maintaining utility values for each action

a ∈ A based on the highest observed reward rmaxa .

This raises the research question: to what extent can we implement an algorithm

where the independent learners can differentiate between the two types of TD-Errors

outlined above. Our aim is to prevent updates using Type 1 TD-Errors from introducing

noise, without discarding updates using Type 2 TD-Errors, which allows us to estab-

lish an accurate average utility value estimate for coordinated behaviour involving each

action.

Chapter 7. Q-learning with Negative Update Intervals 123

Our approach towards answering this question is to compute intervals for each action

a ∈ A, where the lower endpoint is approximately the min reward received for coordi-

nated behaviour involving a. Therefore, receiving a reward less than min on the interval

indicates miscoordination has occurred. For example, for the bimatrix game outlined

in Figure 7.1, due to relative over-generalization and stochastic rewards both maximum

and average reward learners will be drawn towards joint actions 〈C,C〉. Meanwhile, the

respective intervals for computing the average reward for coordinated behaviour involv-

ing each action would be [10, 12] for action A, [0, 15] for action B and [0, 16] for action C.

Having established such intervals we can prevent utility updates resulting from misco-

ordination behaviour, allowing us to compute noise free utility estimates for each action

a ∈ A, and thereby allow both independent learners to establish that 〈A,A〉 is the opti-

mal joint-action. Below we formally define negative update intervals, and describe how

they can be utilized to help independent learners prevent relative overgeneralization.

@
@

@
@

I

II

A

B

C

A B C

12/10 0/− 30 5/− 5

12/10 0/− 30 5/− 5

0/− 30 14/0 15/0

0/− 30 14/0 15/0

5/− 5 15/0 16/0

5/− 5 15/0 16/0

Figure 7.1: Example of a stochastic reward game where agents are confronted with
relative overgeneralization. Each reward n/m is returned with equal probability.

7.1.1 Negative Update Intervals

While agents guided by rmaxa are vulnerable towards stochastic rewards, we consider

that for partially and fully stochastic reward spaces where rmina for coordinated out-

comes is greater than the punishment received for miscoordination, there exist intervals

[rmina , rmaxa] within which negative updates to utility estimates can be performed while

mitigating the noise induced through punishment for miscoordination. We show that

maintaining negative update intervals for each action a ∈ A increases the likelihood of

agents within repeated games converging upon an optimal joint policy π̂∗.

Chapter 7. Q-learning with Negative Update Intervals 124

7.1.2 Maintaining Negative Update Intervals

We establish rmaxa for each action a ∈ A over n burn-in transitions, where the agents

use random exploration. Initially rmina = rmaxa . During training rmina is gradually de-

cayed by subtracting an amount χ. To prevent a premature decay during phases where

independent learners are confronted with the alter-exploration problem, we only decay

if the reward is large enough. That is, rmina is only decayed if rt ≥ rmaxa .

Given that rmina is monotonically decreased we consider that an interval maintained

for an action a will eventually over-expand, leaving learners vulnerable towards the

noise introduced by miscoordination rewards. However, assuming that each agent will

have a similar estimate regarding the desirability of actions, and therefore periods of

miscoordination where agents switch between most desirable actions should be kept to a

minimum, we consider that over time the learners should be capable of estimating rmina .

To accomplish this we maintain running mean and standard deviation estimates for the

rewards received for each action:

rmina ← µ× r + (1− µ)× rmina , (7.1)

σrmin
a
←
√

(1− µ)× (σrmin
a

+ µ× (r − rmina)2). (7.2)

An update only takes place if reward r is greater than the max between rmina and the

rmina − σrmin
a
− ε (Equation (7.3)), where ε is an additional small valued term used to

expand the interval. Therefore, while leniency is vulnerable towards miscoordination

upon cooling temperature values, Q-learning with NUI will continue to discard misco-

ordination rewards. We outline Q-learning with NUI in Algorithm 7.

Q(a)←

Q(a) + αδ, if r ≥ max(rmina , rmina − σrmin
a
− ε).

Q(a), otherwise.
(7.3)

7.1.3 Strategic-Form Game Evaluation

As with the independent learning approaches evaluated in Chapters 4 and 5 we conduct

a hyperparameter sweep for NUI-DDQN, aiming to identify configurations that enable

a high convergence rate across settings. We evaluate all combinations of:

• χ = {0.01, 0.1, 1.0};

• ε decay rates {0.99, 0.995, 0.999}.

Learners use a burn-in period of 1,000 episodes where random exploration is con-

ducted. This value is excessive for the two-agent variations of each game, but ensures

the rmaxa is obtained for the four-agent variations. As in previous evaluations we conduct

1,000 training runs of 15,000 iterations per setting. We provide heat-maps to illustrate

Chapter 7. Q-learning with Negative Update Intervals 125

Algorithm 7 Q-learning with NUI

1: Input: Max steps T , learning rate α, BurnIn, decay step χ
2: Q(a)← initialize(a)
3: for t = 0 to T do
4: Select a according to the ε-greedy selection method based on π
5: Apply a and observe reward r
6: Update rmina and σrmin

a
using equations 7.1 and 7.2

7: if r > rmaxa and t < BurnIn then
8: rmaxa ← r
9: rmina ← r

10: Q(a)← r
11: else if r ≥ rmaxa and t > BurnIn then
12: rmina ← rmina - χ

13: if r ≥ max(rmina , rmina − σrmin
a
− ε) then

14: Q(a)← Q(a) + α(r −Q(a))

the correct run percentages for each setting in Appendix B. We identify two settings

where 100% of runs converged upon the optimal joint policy (across settings): χ = 0.01

combined with either an ε decay rate of 0.99 or 0.995. We observe a drop in the conver-

gence rate within the four-agent variations of the Partially and Fully Stochastic Climb

Game for agents using a slow ε decay rate of 0.999. Furthermore, we observe a decrease

in the correct run percentage across games for larger χ = {1.0, 0.1}. Therefore, similar

to DLQ, Q-learning with NUI benefits from mitigating the alter-exploration problem

through limiting the amount of global exploration. Meanwhile, Q-learning with NUI

being more likely to converge upon a correct joint policy when implemented with slowly

expanding reward intervals is somewhat equivalent to Asynchronized DLQ benefiting

from using a lower learning rate α during learning phase 2.

In Figure 7.2 we use scatter plots to illustrate the average Q-value for Q-learning

with NUI within the two-agent low-penalty version of the Deterministic and Partially

Stochastic Climb Games. We observe that Q-value estimates reflecting coordinated be-

haviour for each action are more likely to be established when using the lower two decay

values χ = 0.01 and χ = 0.1. Furthermore, for a large decay value χ = 1.0 we can

observe a deterioration in the Q-value estimates upon increasing the ε decay rate. For

the (deterministic) Climb Game we observe that when using one of the optimal hyper-

parameter configurations, e.g., ε decay rate 0.99 and χ = 0.01, Q-values for each action

approach the reward received for coordinated behaviour. For the Partially Stochas-

tic Climb Game, meanwhile, we observe that the utility for B is being overestimated.

However, this indicates that upon discovering that A has a higher utility estimate, the

interval for B is no longer expanded. This is desirable, enabling a switch back to B,

should A prove sub-optimal.

Chapter 7. Q-learning with Negative Update Intervals 126

(a) CG, χ = 0.01 (b) CG, χ = 0.1 (c) CG, χ = 1.0

(d) PSCG, χ = 0.01 (e) PSCG, χ = 0.1 (f) PSCG, χ = 1.0

Figure 7.2: Average Q-values for Q-learning with NUI in the two-agent low-penalty
Climb Game (CG) and Partially Stochastic Climb Game (PSCG).

7.1.4 Robustness Towards Noisy Transitions

Wei and Luke [209] observe that even after converging upon an optimal joint-policy,

only a small likelihood of global exploration can result in optimal policy destruction for

Lenient Multi-Agent Reinforcement Learning 2 (LMRL2). Therefore a small number of

iterations ending in miscoordination, due to one of the agents taking an exploratory step,

is sufficient to destabilize the learning process, and divert the learners towards a sub-

optimal joint-policy. For LMRL2 optimal policy destruction typically occurs when the

learners have insufficient leniency to recover from repeated miscoordination. The authors

demonstrate this property using LMRL2 with a Boltzmann exploration strategy that

remains exploratory. As a result a large proportion of iterations end in miscoordination,

lowering the Q-value estimates for optimal actions once the learners apply insufficient

leniency towards updates.

Throughout this thesis we have observed that LMRL2, SDLQ and Q-learning with

NUI are capable of achieving high convergence rates within the two-agent, low-penalty

versions of the Penalty Game and the three Climb Game variations. However, in domains

with a large state space utility values are frequently backed up from noisy state-transition

sequences. Furthermore, within real world domains learners must be robust towards

noisy actions, where upon attempting to perform an action, due to disturbances in

the environment and noisy observations, a different action is performed than the one

intended [192]. In this sub-section we evaluate the robustness of LMRL2, SDLQ and Q-

learning with NUI towards noisy actions. We pick the best hyperparameter configuration

for each domain based on the performance achieved in noise free evaluations. For SDLQ

and Q-learning with NUI this setting remains consistent across domains:

Chapter 7. Q-learning with Negative Update Intervals 127

Q-learning with NUI:

• An ε decay rate of 0.99,

• decay steps χ = 0.01,

• and 100 burn-in iterations;

Synchronized-DLQ:

• A leniency moderation factor k = 1.0,

• α = 0.001,

• and 100 burn-in iterations.

For LMRL2 we use k = 107 for the Climb Game, Partially Stochastic Climb Game

and Penalty Game. For the Fully Stochastic Climb Game we set k = 101. We gather

1,000 runs for different noisy action likelihoods, as illustrated in Figure 7.3. The x-

axis represents the likelihood of a noisy action occurring at each time-step. Therefore, a

likelihood of 0.1 means each learner is likely to produce a noisy action every ten episodes.

To provide the learners sufficient time to converge we only introduce the noisy actions

after 10,000 iterations.

Interestingly, we find that SDLQ outperforms LMRL2 and Q-learning with NUI in

all settings, with the exception of the Partially Stochastic Climb Game, and in the

Fully Stochastic Climb Game when there is a high likelihood of noisy actions. We

believe SDLQ’s strong performance during these trials can be attributed towards the

learners using a low-learning rate combined by synchronized jumps between equilibria,

protecting optimal actions from sequences of miscoordination. However, we observe

that even without synchronized updates Q-learning with NUI is robust towards low-

amounts of noise in the majority of settings. Furthermore, while scaling SDLQ may

prove challenging, we show the remainder of this chapter how Q-learning with NUI can

be scaled to help multi-agent deep reinforcement learning agents mitigate the impact of

noisy utility values.

7.2 Temporally-Extending Team Bimatrix Games

Negative Update Intervals DDQN (NUI-DDQN), the scaled version of Q-learning with

NUI, is designed for partially observable Markov games that are temporally-extended

versions of team bimatrix games. We call a particular roll-out of a policy πi for an agent i,

i.e. the sequence of resulting states, actions, and associated rewards, a trajectory and

denote it by τi [186]. The outcome of temporally-extended versions of team bimatrix

games is determined by joint-trajectories τ resulting from π. The reward function

has inequalities mirroring those of the corresponding bimatrix game. Therefore, each τi

belongs to a set of trajectories T a that implements an action a ∈ A. Independent learners

Chapter 7. Q-learning with Negative Update Intervals 128

(a) Penalty Game (b) Climb Game

(c) Partially Stochastic Climb Game (d) Fully Stochastic Climb Game

Figure 7.3: Correct run percentage for LMRL2, Synchronized-DLQ and Q-learning
with NUI within two-player low-penalty Penalty Game and Climb Game variations,

where the actions taken by learners are noisy after 10,000 episodes.

are tasked with learning a joint policy π that results in optimal joint trajectories τ .

Throughout this chapter τi refers to a trajectory that consists of all the state-transition

tuples (o, a, r, o′) of an individual episode for an agent. In Section 7.4, we introduce

a temporally-extended version of the Climb Game, which serves as the basis for our

experiments. First, we define negative update intervals within the context of temporally-

extended versions of team bimatrix games and describe how they help NUI-DDQN

prevent relative overgeneralization.

7.3 Deep Q-Learning with Negative Update Intervals

As in the previous chapter the algorithm which we outline in this section, NUI-DDQN, is

an extensions of the Double-DQN (DDQN) introduced by Van Hasselt et al. [203]. Each

agent i is implemented with a ConvNet trained to approximate Q-values for observation-

action pairs: Qi : Oi×Ui → R [104]. As in the stateless version of NUI-DDQN, outlined

in Section 7.1, our aim is to compute intervals for each action a ∈ A, where the lower end-

point is approximately the min reward received for coordinated behaviour involving a.

Therefore, receiving a reward less than min on the interval indicates miscoordination

has occurred. However, in contrast to the stateless version, an action a in this context

is implemented by a trajectory τ ∈ T a within temporally-extended versions of team

bimatrix games, as outlined above in Section 7.2.

Classifying Trajectories. The reward yielded by temporally-extended versions of

team bimatrix games is determined by joint-trajectories τ . Therefore, given an oracle

Chapter 7. Q-learning with Negative Update Intervals 129

ϑ : T → A capable of determining the set T a that trajectory τ belongs to, negative

update intervals [rmina , rmaxa] can be stored for each action a ∈ A, thereby increasing the

likelihood of independent learners computing noise free average utility values for tran-

sitions belonging to coordinated joint-trajectories τ . For simplicity our evaluations use

temporally-extended versions of team bimatrix games with a predefined A. However, we

discuss the potential of using a theory of mind neural network [154] for ϑ under Future

Work (Section 7.6).

Maintaining Negative Update Intervals. We establish rmaxa for each action a dur-

ing an initial exploration phase used to fill the experience replay memories D. Initially

rmina = rmaxa . During training rmina is gradually decayed. To prevent a premature de-

cay during phases where independent learners are confronted with the alter-exploration

problem, we only decay if the cumulative reward for the trajectory (Rτ =
∑|τ |

t=0 rt) is

large enough. That is, rmina is only decayed if Rτ ≥ rmaxa −ε, where ε is a small constant.

We assume a reward space between 1.0 and -1.0, and therefore decay rmina + 1.0 and

subsequently subtract 1.0.

Addressing Catastrophic Forgetting. Catastrophic forgetting occurs when trained

networks forget how to perform previously learned tasks while learning to master a

new task [57]. To allow agents to maintain Q-values for transitions belonging to less

frequently observed actions a, without preventing outdated transitions from being dis-

carded, we implement a separate experience replay memory Da for each action a ∈ A.

Instead of storing n transitions each Da stores n episodes, since traditional experience

replay memories may store a significant number of obsolete transitions once independent

learners become efficient at solving a task and require less steps. Episodic experience

replay memories, meanwhile, are more likely to reflect the current search space. During

sampling the Da are concatenated.

Storing Trajectories. In addition to rmina we maintain vectors Ra, which store the

most recent n cumulative rewards for each action a. A trajectory is stored iff the

cumulative reward Rτ is greater than the max between rmina and the Ra’s mean Ra minus

the standard deviation SDRa (Equation (7.4)). Therefore, while leniency is vulnerable

towards miscoordination upon cooling temperature values, NUI-DDQN will continue to

discard miscoordination trajectories. We define NUI-DDQN in Algorithm 8.

Da =

Da ∪ τ if Rτ ≥ max(rmina , Ra − SDRa).

Da Otherwise.
(7.4)

Chapter 7. Q-learning with Negative Update Intervals 130

Algorithm 8 NUI-DDQN

1: Input: Number of episodes E, replay period K, max steps T
2: Random exploration phase (Init for Da, rmina and rmaxa)
3: for e = 1 to E do
4: τ = ∅
5: Observe o0 and choose a0 ∼ πθ(o0)
6: for t = 1 to T or until an absorbing state is encountered do
7: Observe ot, rt
8: Store transition (ot−1, ut−1, rt, ot) in τ
9: if t ≡ 0 mod K then

10: Optimise Network

11: Copy weights from time to time: θ′t ← θt
12: Choose at ∼ πθ(ot)
13: a← ϑ(τ)
14: Ra ← Ra ∪Rτ
15: if rmaxa < Rτ then
16: rmaxa ← Rτ

17: if Rτ ≥ max(rmina , Ra − SDRa) then
18: Da ← Da ∪ τ
19: if Rτ ≥ rmaxa − ε then
20: rmina ← decay(rmina)

7.4 The Apprentice Firemen Game

The Climb Game is often studied as a repeated game. We are interested in solving an

equivalent game extended over the temporal dimension, where joint trajectories τ result

in outcomes comparable to the joint-actions from the Climb Game [33, 90] variations used

during our previous empirical evaluations. We formulate a temporally-extended versions

of team bimatrix game based on the Climb Game that we call the Apprentice Firemen

Game (AFG), where two (or more) agents located within a gridworld are tasked with

locating and extinguishing fires. First, however, the agents must locate an equipment

pickup area and choose one of the items listed in Table 7.1 below. The task is fully

cooperative, i.e. both agents are required to extinguish one fire. As outlined in Table 7.1

both agents detonating an explosive device (fighting fire with fire) is the most effective

combination, equivalent to the joint action 〈A,A〉 in the Climb Game. While the fire

extinguisher is more effective than the fire blanket, agents choosing one run the risk

of being hit by debris if the other agent triggers an explosive device, whereas the fire

blanket offers protection. Therefore the fire extinguisher and fire blanket are equivalent

to actions B and C respectively.

The independent learners in our evaluation are not explicitly told which actions other

agents have performed. However, we hypothesize they can learn to avoid miscoordina-

tion in the AFG when able to observe each other during transitions that determine an

episode’s outcome, reducing the impact of optimal joint action 〈A,A〉 being a shadowed

equilibrium. To test this hypothesis we conduct experiments using two layouts outlined

Chapter 7. Q-learning with Negative Update Intervals 131

Description Action (a ∈ A) Effectiveness Risk

Explosive Device A High High

Fire Extinguisher B Medium High

Fire Blanket C Weak None

Table 7.1: Apprentice Firemen Game Equipment

below (and illustrated in Figure 7.4), where equipment pickup decisions are irrevoca-

ble for the duration of each episode. At the start of an episode one randomly chosen

obstacle in the main area is set on fire. Episodes end when both agents occupy cells

next to the fire, upon which a terminal reward is returned. To eliminate confounding

factors all non-terminal transitions yield a reward of 0. We introduce a 10,000 step limit

upon observing that trained agents delay miscoordination outcomes through avoiding

the fire. The agents receive a miscoordination reward of -1.0 upon reaching this limit.

The action space is discrete and includes moving up, down, left, right and NO-OP.

Pickup actions occur automatically upon independent learners entering an equipment

cell empty handed. DDQNs perform well when receiving rewards within [−1, 1], which

led us to choose the reward structures listed in Figures 7.5 – 7.7 for the deterministic,

partially and fully stochastic reward spaces of the AFG respectively. For stochastic

transitions randomly moving civilians can be added who obstruct paths.

Layout 1: Observable irrevocable decisions Two agents in a 16 × 15 gridworld

begin each episode in opposite corners of a compartment separated from the main area.

The agents must exit the compartment, gather equipment from a shared pickup area

and subsequently extinguish the fire, meaning that agents observe each other during the

irrevocable equipment selection process. One agent can, therefore, observe the other

agent’s choice and subsequently select a best response to avoid miscoordination - in

terms of the original Climb (bimatrix) game, this allows agents to act as if it was a

perfect-information commitment version of the game with a follower and leader.

Layout 2: Irrevocable decisions in seclusion Two agents in a padded 53 × 53

gridworld begin each episode in separate chambers. To mimic the simultaneity of the

choice of actions in the Climb (bimatrix) game, each agent is limited to 13×13 centered

observations. Agents are therefore unable to observe each others’ equipment selection

actions.

7.5 Empirical Evaluation

7.5.1 Implementation Details

Similar to work by Leibo et al. [104] the simple visualisation of our domains helps with

regards to training speeds and being able to run multiple training runs in parallel per

GPU, while still posing a significant multi-agent deep reinforcement learning challenge.

Therefore, given the number of cells within the main area that agents can occupy (90),

Chapter 7. Q-learning with Negative Update Intervals 132

(a) Layout 1 (b) Layout 2

Figure 7.4: AFG layouts with fires (yellow), obstacles (grey) and equipment A (red),
B (green) & C (blue). Firemen are initially white, but following a pickup adopt the

equipment’s color. Civilians are also white (Not present in the above images).

@
@

@@

I

II

A

B

C

A B C

0.8 −1.0 0

0.8 −1.0 0

−1.0 0.6 0.5

−1.0 0.6 0.5

0.0 0.0 0.4

0.0 0.0 0.4

Figure 7.5: Terminal rewards for the Deterministic AFG.

fire locations (25), agent color combinations (16) and actions (5) we estimate 16,020,000

state-action pairs per layout before factoring in civilians and additional layout specific

cells. We therefore follow the example of recent publications by conducting evaluations

in gridworlds with sufficient complexity to warrant a multi-agent deep reinforcement

learning approach [66, 104, 144]. Networks consist of 2 convolutional layers with 32 and

64 kernels respectively, a fully connected layer (1024 neurons) and an output node for

each action1. We use learning rate α = 0.0001, discount rate γ = 0.95 and ε-Greedy

exploration with a ε decay rate of 0.999. Each D stores 250,000 transitions. Regarding

algorithm specific configurations:

NUI-DDQN. To determine the set of trajectories that τ belongs to each oracle ϑ

queries the respective agent instance regarding the ID of the equipment used. Each Da
stores 100 episodes, while the decay rate for rmina is set to 0.995.

LDDQNs. We use a leniency moderation factor K = 1.0 and a retroactive temperature

decay schedule combined with temperature greedy exploration strategy as described in

the previous chapter.

1We make our code available online: https://github.com/gjp1203/nui_in_madrl

https://github.com/gjp1203/nui_in_madrl

Chapter 7. Q-learning with Negative Update Intervals 133

@
@

@
@

I

II

A

B

C

A B C

0.8 −1.0 0

0.8 −1.0 0

−1.0 1.0/0.0 0.5

−1.0 1.0/0.0 0.5

0.0 0.0 0.4

0.0 0.0 0.4

Figure 7.6: Terminal rewards for the Partially Stochastic AFG.
For 〈B,B〉 1.0 is yielded on 60% of occasions.

@
@

@
@

I

II

A

B

C

A B C

.9/.7 .2/− 1. .6/− .6

.9/.7 .2/− 1. .6/− .6

.2/− 1. 1./.0 .9/.1

.2/− 1. 1./.0 .9/.1

.6/− .6 .4/− .4 .8/.0

.6/− .6 .4/− .4 .8/.0

Figure 7.7: Terminal rewards for the Fully Stochastic AFG.
For 〈B,B〉 1.0 is yielded on 60% of occasions.

7.5.2 Experiments

To evaluate our hypothesis in Section 7.4 we collect 30 training runs of 5,000 episodes per

algorithm within each layout. For LDDQNs an additional 5,000 episodes are required to

sufficiently decay the temperatures T (oi, ui). Finally, to evaluate the impact of stochastic

transitions we introduce 10 civilians in layout 2 and conduct 30 runs of 10,000 episodes

per setting.

7.5.3 Evaluation Using Phase Plots

The ternary phase plots depicted in Tables 7.2 – 7.4 provide insights regarding the

learning dynamics of the agents. Each line illustrates the average shift in the trajectory

distributions throughout the runs conducted, using a rolling window of 1000 episodes.

The black squares at the centre of each plot represent the averaged initial T a distributions

while the red dots represents the final distribution. Each corner represents 100% of

trajectories τ ∈ T a for the labelled action a ∈ A. For example, if both lines end

with red dots in the top corner of a simplex, then the two agents are predominately

producing trajectories τ ∈ TA, and have converged upon the optimal Nash Equilibrium

〈A,A〉. The agents have therefore learned policies where the optimal equipment is being

selected from the pickup area in the AFG, as outlined in section 7.4.

Chapter 7. Q-learning with Negative Update Intervals 134

Deterministic rewards. Under pathologies (Chapter 3, Section 3.1) we discuss how

maximum based learners can prevent relative overgeneralization in the deterministic

reward Climb Game. Similarly the phase plots for deterministic reward settings con-

firm that with sufficient optimism / leniency, independent learners can prevent relative

overgeneralization while facing the curse of dimensionality (HDDQN β = 0.5, LDDQN

and NUI-DDQN in Tables 7.2, 7.3 and 7.4). Meanwhile, HDDQN (β = 0.9) shows

that agents with insufficient optimism gravitate towards the shadow equilibrium 〈C,C〉.
Interestingly, in layout 2 with 10 civilians (Table 7.4) HDDQN (β = 0.9) agents are

completing the climb steps discussed in Chapter 4, Section 4.2.2 towards 〈B,B〉, while

β = {0.5, 0.7} converge towards superior joint policies compared to layout 2 without

civilians. Further investigation is required to establish why.

Stochastic Rewards. As evident by the phase plots in Tables 7.2 – 7.4, the optimism

that helps HDDQNs prevent relative overgeneralization in the deterministic reward set-

tings can lead agents to converge upon sub-optimal joint policies when learning from

partially or fully stochastic rewards. For HDDQN (β = 0.5), for instance, we ob-

serve an increase in τ ∈ TB for partially stochastic, and τ ∈ TC by Agent 2 for fully

stochastic rewards. LDDQNs, meanwhile, are less vulnerable, gravitating towards opti-

mal joint-policies despite stochastic rewards and relative overgeneralization in layout 1

and when receiving partially stochastic rewards in layout 2 with no civilians. However,

LDDQNs struggle when receiving fully stochastic rewards in layout 2, and have lim-

ited success once civilians are added. NUI-DDQNs, meanwhile, predominately converge

upon optimal joint-policies. When receiving partially stochastic rewards NUI-DDQNs

are initially tempted by the misleading rewards received for 〈B,B〉, before converging

on a joint-policy with the majority of trajectories τ ∈ TA. For fully stochastic rewards

a slight increase in τ ∈ TC can be observed.

7.5.4 Learning Best Response Policies

In Section 7.4 we proposed that independent learners should learn to avoid miscoor-

dination trajectories within layout 1 due to observing each other during interactions

with the equipment pick-up area. To compare the policies learned in layouts 1 and 2

(without civilians), we compute the average coordinated rewards RC for each training

run. We compute RC using the rewards from the final 1000 episodes that did not end in

miscoordination outcomes {〈A,B〉, 〈B,A〉}. Runs with RC ≈ 0.8 have converged upon

the optimal joint-policy, where 〈A,A〉 is the most frequently observed outcome. For the

majority of settings higher RC values are achieved by agents in layout 1. The scatter

plots in Table 7.5 provide evidence to support our hypothesis. Each marker within the

scatter plots represents the RC for an individual run. To provide further clarity we sort

the runs by RC. We observe that HDDQN β = 0.7 and β = 0.9 converges upon a policy

with RC ≈ 0.8 numerous times in each reward setting in layout 1, while only twice in

layout 2 (HDDQN β = 0.7, Partially Stochastic & Fully Stochastic) 2. Interestingly, we

2We provide additional RC scatter plots for each evaluation setting in Appendix B.

Chapter 7. Q-learning with Negative Update Intervals 135

Layout 1 (Civilians: 0, Episodes: 5,000)

DET PS FS

Hysteretic-DDQN β=0.5

Hysteretic-DDQN β=0.7

Hysteretic-DDQN β=0.9

Lenient-DDQN

NUI-DDQN

Table 7.2: Phase plots for runs conducted within Layout 1 (0 civilians), illustrating
the average shift in the action A distributions throughout the runs conducted, using a
rolling window of 1,000 episodes. The black squares and red dots represent the initial

and final distributions, while DET, PS and FS are abbreviations for deterministic,
partially stochastic and fully stochastic rewards, respectively.

Chapter 7. Q-learning with Negative Update Intervals 136

Layout 2 (Civilians: 0, Episodes: 5,000)

DET PS FS

Hysteretic-DDQN β=0.5

Hysteretic-DDQN β=0.7

Hysteretic-DDQN β=0.9

Lenient-DDQN

NUI-DDQN

Table 7.3: Phase plots for runs conducted within Layout 2 (0 civilians), illustrating
the average shift in the action A distributions throughout the runs conducted, using a
rolling window of 1,000 episodes. The black squares and red dots represent the initial

and final distributions, while DET, PS and FS are abbreviations for deterministic,
partially stochastic and fully stochastic rewards, respectively.

Chapter 7. Q-learning with Negative Update Intervals 137

Layout 2 (Civilians: 10, Episodes: 10,000)

DET PS FS

Hysteretic-DDQN β=0.5

Hysteretic-DDQN β=0.7

Hysteretic-DDQN β=0.9

Lenient-DDQN

NUI-DDQN

Table 7.4: Phase plots for runs conducted within Layout 2 wtih 10 civilians,
illustrating the average shift in the action A distributions throughout the runs

conducted, using a rolling window of 1,000 episodes. The black squares and red dots
represent the initial and final distributions, while DET, PS and FS are abbreviations

for deterministic, partially stochastic and fully stochastic rewards, respectively.

Chapter 7. Q-learning with Negative Update Intervals 138

find that for HDDQN (β = 0.5, Partially Stochastic) and LDDQN (Deterministic & Par-

tially Stochastic) a larger number of runs converge upon joint-policies where RC ≈ 0.8

in layout 2. NUI-DDQNs, meanwhile, perform consistently when receiving deterministic

and partially stochastic rewards in both settings, while a couple of runs faltered for fully

stochastic rewards within layout 2. It is worth noting that even for NUI-DDQN runs

with low RC, 〈A,A〉 remains a frequently observed outcome.

Deterministic Partially Stochastic Fully Stochastic

HDQN β = 0.7

HDQN β = 0.9

Table 7.5: Scatter plots depicting the average coordinated rewards RC for
HDDQNs with β = 0.7 and β = 0.9.

7.5.5 Impact of Stochastic Transitions

Introducing 10 civilians to layout 2 allows us to examine the challenges faced by multi-

agent deep reinforcement learners when attempting to prevent relative overgeneralization

while making decisions using noisy utility values backed up from stochastic follow-on

transitions. In Figure 7.8 we compare the Q-values from actions leading to the selection

of equipment within both 0 and 10 civilian settings from two individual NUI-DDQN

runs with partially stochastic rewards. We observe that Q-values oscillate significantly

upon introducing civilians, with Q-values belonging to sub-optimal equipment B pickups

frequently rising above those belonging to A. Stochastic transitions can, therefore, lead

to the moving target problem (Section 3.1.5), in this case resulting in extended periods

of miscoordination. However, by maintaining negative update intervals, NUI-DDQN

can overcome miscoordination and revert back to a policy that generates trajectories

τ ∈ TA.

Chapter 7. Q-learning with Negative Update Intervals 139

(a) 0 Civilians (b) 10 Civilians

Figure 7.8: NUI-DDQN Pickup Q-values

7.5.6 Considerations Regarding LDDQNs

The phase plots in Tables 7.2 – 7.4 indicate that given further hyperparameter tuning an

increase in trajectories τ ∈ TA should be possible for LDDQNs. However, while searching

for an optimal set of hyperparameters we encountered the optimal policy destruction

problem [209]: while LDDQNs fail to converge upon 〈A,A〉 with insufficiently decayed

temperature values, rapidly decaying temperature values leaves LDDQNs vulnerable

during the periods of miscoordination discussed in Section 7.5.5. We therefore choose a

patient approach, with the consequence that even after 10,000 episodes the agents have

still not converged. To illustrate this dilemma we conduct additional runs in a simplified

partially stochastic reward version of layout 1 with only 1 fire location 3. By varying the

number of obstacles surrounding this fire, and thereby controlling the number of Access

Points from which the agents can extinguish it, we observe the rolling percentage of

〈A,A〉 outcomes increases significantly faster when the number of Tt(o, u) values that

need decaying decreases (See Figure 7.9). We conduct 20 runs for each access point

setting.

Figure 7.9: Running 〈A,A〉 % by LDDQNs dependent on fire Access Points.
Agents could overlap next to the fire for 1 Access Point.

3Illustrations of the layouts can be found in the Appendix B.3.

Chapter 7. Q-learning with Negative Update Intervals 140

7.6 Future work

Below we discuss two interesting topics for future work in this area:

1) We conducted trials using 20 sets of fixed policies trained in a simplified layout 1,

finding evidence that leader-follower dynamics emerge during training, where one agent

waits to observe the other’s equipment choice. We assigned the policies to disjoint sets

ΠA and ΠB based on the percentage of τ ∈ TA and τ ∈ TB their roll-outs produced.

Upon subsequently running trials with each leader-follower combination, we find half of

πB followers choose A when paired with a πA leader and vice-versa. We are currently

investigating why only some independent learners develop this adaptive ability.

2) For simplicity, the actions a ∈ A returned by the oracle ϑ for the AFG are predefined.

Going forward recent work on the topic of theory of mind by Rabinowitz et al. [154]

could pave the way for a learned oracle ϑ. The authors build a data-efficient meta-learner

that learns models of the agents that it encounters. Through observing trajectories τ

their resulting theory of mind network architecture is used to predict next-step actions,

the consumption of objects within the environment and the successor representation.

This opens up the possibility of applying NUI-DDQN to more complex domains where

a learning approach is required to identify actions a ∈ A.

7.7 Summary

Our empirical evaluation highlights the challenges multi-agent deep reinforcement learn-

ing agents must overcome to avoid converging upon sub-optimal joint policies when

making decisions using noisy approximated utility estimates backed-up from stochastic

follow-on state-transitions and rewards.

To summarize our contributions:

1) We presented the Apprentice Firemen Game (AFG), which is a new and challenging

environment that simultaneously confronts learners with five pathologies: relative over-

generalization, stochasticity, the moving target problem, the alter exploration problem

and deception.

2) We evaluate hysteretic [141] and lenient [144] learners on the AFG. While both ap-

proaches can overcome the pathologies in simpler settings, they fail when required to

independently make irrevocable decisions in seclusion determining an episode’s outcome.

3) Motivated by this finding we designed a new algorithm NUI-DDQN that is based on

negative update intervals. Our algorithm identifies and discards episodes that end in

miscoordination. In doing so, it reduces the noise introduced by the large punishments

that result from miscoordination. We show that NUI-DDQN consistently converges

towards the optimal joint-policy within each setting. Furthermore, we observe that

the stateless version of NUI-DDQN, Q-learning with NUI, can prevent relative over-

generalization within the Fully Stochastic Climb Game, while using a hyperparameter

configuration that allows for a 100% convergence rate within the remaining games used

for the evaluations conducted in Chapters 4 and 5.

Chapter 8

Conclusion

This chapter concludes the thesis. We first provide a summary of the contributions

discussed in each of the previous chapters in relation to the research questions formulated

in Section 1.4. We subsequently discuss limitations of our work, and conclude with ideas

for future research in this area.

8.1 Contributions and Answers to the Research Questions

We proposed five research questions in Section 1.4. Below we shall answer each of these

questions in turn based on the findings presented in the respective chapters.

Q1: To what extent can existing independent learning approaches mitigate multi-agent

learning pathologies within n-player repeated single-stage strategic-form games?

Chapter 4 & 5

In Chapter 4 we re-evaluate to what extent state of the art independent learn-

ers can overcome concurrent learning pathologies within n-player repeated single-

stage strategic-form games. The concurrent learning pathologies include: miscoor-

dination, relative overgeneralization, the alter-exploration problem and stochastic

rewards. We re-evaluate the following independent learning algorithms: decen-

tralized Q-learning [33], hysteretic Q-learning [120], FMQ [90], Recursive-FMQ

[121] and Lenient Multi-Agent Reinforcement Learning 2 (LMRL2) [209]. In con-

trast to previous work our evaluation focuses on robustness towards scaled penalty

values and an increase in the number of independent learners. Our evaluations

take place within two and four-player versions of the Penalty Game [33], and the

deterministic, partially and fully stochastic Climb Games [33, 90].

We identify hyperparameter configurations for decentralized Q-learning and hys-

teretic Q-learning that improve upon the results reported in multi-agent reinforce-

ment learning literature [90, 121, 209]. Furthermore, our findings are in-line with

the evaluation conducted by Wei and Luke [209], with LMRL2 emerging as the

141

Chapter 8. Conclusion 142

most robust existing approach. However, our hyperparameter sweep shows that

LMRL2 requires hyperparameter tuning to enable a high convergence rate within

each of the games studied. Furthermore, we observe a drop in the convergence

rate within the stochastic Climb Game variations upon increasing the number of

independent learners, or increasing the scale of the penalty values. In domains

suffering from relative overgeneralization and stochastic rewards we observe a de-

terioration of Q-values following one of the lenient learners unilaterally changing

their policy. In Chapter 5 we find this to be a result of miscoordination occurring

following asynchronous leniency updates, where only one of the learners lowers the

utility value of the current optimal action following a transition. This can result

in an alternative action having the highest estimated utility. The subsequent de-

terioration is caused by a lack of leniency for well explored actions combined with

an increased likelihood of miscoordination due to the other agent(s) not having

adjusted their policy (i.e., the moving target problem). As a result the learners

will be unlikely to return to the previous action, even if the new action proves

sub-optimal.

Q2: To what extent can synchronized lenient learners reduce miscoordination?

Chapters 5 & 7

In Chapter 5 we address two of LMRL2’s weakness: (i) the destruction of Q-values

following unilateral policy changes; (ii) the optimal policy destruction caused by

the alter-exploration problem. In Section 5.1 we introduce Distributed Lenient Q-

learning (DLQ) to address the alter-exploration problem. DLQ separates learning

into two distinct phases. First the agents establish the maximum reward available

for each action during a maximum reward learning phase; equivalent to distributed

Q-learning with an uniform action selection policy. The learners subsequently

switch to using leniency combined with a greedy action selection strategy to pre-

vent the alter exploration problem. In addition we introduce synchronized leniency

updates to mitigate the moving target problem. We therefore distinguish between

Synchronized-DLQ (SDLQ) and Asynchronized-DLQ (ADLQ). In Section 5.2 we

empirically show that SDLQ learners mitigate miscoordination through switching

between equilibria during the same time-steps. This allows SDLQ to achieve state

of the art performances within the Fully Stochastic Climb Game. Furthermore,

in Section 7.1.4 we observe that SDLQ is robust towards noisy transitions where

independent learners execute an unintended action with a probability. We also

find that ADLQ outperforms LMRL2 within the majority of fully and partially

stochastic Climb Game settings.

In Section 5.3 we scale DLQ to low-dimensional Markov games, introducing a

staggered transition from explorer to exploiter and optimistic to average reward

learner. We evaluate the full version of DLQ within two Markov games that have

Chapter 8. Conclusion 143

proven challenging for LMRL2: Relative Overgeneralization 3 (RO3) and Gradi-

ent 2 games [209]. Interestingly, we identify hyperparameter configurations that

significantly improve upon the convergence rate previously reported for LMRL2

within RO3 [209]. However, while LMRL2 is sensitive towards the choice of le-

niency moderation factors within RO3, both types of DLQ deliver convergence

rates above 98.5% across settings.

Finally, we evaluate both SDLQ and ADLQ within Gradient 2, a domain where

LMRL2 is capable of achieving a high convergence rates on a correct joint-polices,

but due to the number of states struggles to find complete policies, where learners

behave correctly in each state of the domain. Interestingly, one of the states in

Gradient 2 presents a challenge for synchronized leniency updates, due to each ac-

tion combination resulting in the same potential max reward, and only two actions

being available to each agent. However, the rewards in this state are stochastic,

meaning the learners are in fact being confronted with miscoordination. We find

that, if SDLQ agents lock onto a suboptimal action combination, then the learn-

ers are destined to switch between joint-policies that result in miscoordination as

the synchronized leniency updates are applied. In contrast ADLQ can break this

cycle. Furthermore, a staggered exploration strategy allows ADLQ to converge

upon a significantly higher number of complete polices compared to LMRL2.

Q3: To what extent can we design high-dimensional domains for evaluating the suscep-

tibility of deep reinforcement learners towards multi-agent learning pathologies?

Chapters 6 & 7

In Chapters 6 and 7 we introduce two high-dimensional domains with a large state-

space for evaluating the susceptibility of multi-agent deep reinforcement learning

algorithms towards concurrent learning pathologies:

1.) CMOTP Extensions: In Section 6.5.1 we extend the Coordinated Multi-

Agent Object Transportation Problems (CMOTPs) [26], which requires two agents

to deliver one item of goods to a drop-zone within a grid-world. The task is

fully-cooperative, meaning to shift the goods both agents must move in the same

direction. However, first the agents must exit a separate compartment one by one

and locate the goods. The learners receive a sparse positive reward upon placing

the goods inside the drop-zone. To add to the challenge the learners’ observations

consist of a bird’s eye view of the environment. Therefore, independent learners

must first learn to distinguish themselves from their team-mate using the pixel val-

ues. We introduce two extensions to the CMOTP: narrow-passages and multiple

(deceptive) dropzones that yield stochastic rewards. We find the narrow-passages

requiring thousands of transitions for independent learners to reach the drop-zone

when using random exploration. Therefore, even when using a large experience

Chapter 8. Conclusion 144

replay memory D, deep reinforcement learners may only store a hand-full of state-

transitions with a positive reward. We find that independent learners benefit from

maintaining an optimistic disposition in this domain (see Section 6.6). However,

within the stochastic reward CMOTP overoptimistic learners can be led astray by

stochastic rewards. A slippery surface can be added to the domain to introduce

stochastic transitions, a common practice in grid-world domains. Therefore, our

CMOTP variations present independent learners with the pathologies of decep-

tion, miscoordination, the moving-target problem, the alter-exploration problem

and stochasticity.

2) The Apprentice Firemen Game: In Section 7.4 we introduce the Appren-

tice Firemen Game, a temporally-extended version of the team bimatrix game

the Climb Game [33, 90]. In the AFG two agents located within a grid-world are

tasked with locating and extinguishing fires. As with the CMOTP, the AFG is

fully cooperative, i.e. two agents are required to extinguish one fire. First, how-

ever, the agents must locate an equipment pickup area and each choose an item for

extinguishing a fire. However, not all items are compatible, resulting in outcomes

comparable to the joint-actions from the Climb Game [33, 90]. Therefore, the

AFG confronts independent learners with the same pathologies as the CMOTP,

with the addition of relative overgeneralization. For additional stochasticity we

add civilians to the grid-world environment, which obstruct the learners paths

towards the fires.

For single agent deep reinforcement learning the Arcade Learning Environment [12]

and the OpenAI Gym [21] have established themselves as the most frequently used

suits for benchmarking algorithms. The more challenging domains found within

these bench-marking suits provide a means for assessing the performance of new

approaches when faced with known pathologies. The multi-agent literature mean-

while provides a rich taxonomy of multi-agent learning pathologies. As we have

discussed, traditionally multi-agent reinforcement learning pathologies have been

studied within the context of strategic-form and stochastic games. Meanwhile,

our domains provide a means for evaluating the ability of multi-agent deep re-

inforcement learning agents to overcome concurrent learning pathologies within

high-dimensional domains with a large state-space. Furthermore, through mak-

ing our CMOTP extensions [144] and the Apprentice Firemen Game (AFG) [143]

publicly available 1, our environments have recently been recognised as belonging

to a growing list of open source benchmarking environments for multi-agent deep

reinforcement learning [54, 79, 80, 110].

Q4: To what extent can leniency be scaled to multi-agent deep reinforcement learning?

Chapter 6

1https://github.com/gjp1203/nui_in_madrl

https://github.com/gjp1203/nui_in_madrl

Chapter 8. Conclusion 145

In Chapter 6 we introduce the Lenient (Double) Deep Q-Network (LDDQN),

demonstrating that leniency can be scaled to deep multi-agent reinforcement

learning. In Section 6.7 we show that LDDQN is more likely to converge on

correct joint-policies than Hysteretic DDQNs (HDDQNS) within the stochastic

reward CMOTP. As with DLQ, we find that staggering the temperature decay

to prevent premature temperature cooling helps LDDQNs converge upon optimal

joint-policies. Furthermore, we observe that learners benefit from increased ex-

ploration within initial states until the average rewards have been established in

follow-on states. To accomplish this we introduced two extensions to leniency:

(i) a retroactive temperature decay schedule to prevent the premature decay of

temperatures for state-action pairs; (ii) a T (ot)-Greedy exploration strategy that

allows agents to remain exploratory in states with a high average temperature

value. Our LDDQN hyperparameter analysis reveals that the highest perform-

ing agents within the stochastic reward CMOTP use a steep temperature decay

schedule that maintains high temperatures for early transitions combined with a

temperature modification coefficient that slows down the transition from optimist

to average reward learner, and an exploration exponent that delays the transition

from explorer to exploiter.

Q5: To what extent can independent learners overcome relative overgeneralization

while making decisions using noisy utility values backed up from stochastic follow-

on transitions?

Chapter 7

In Chapter 7 we turn to the Apprentice Firemen Game (AFG) to evaluate to

what extent LDDQN can overcome relative overgeneralization within a multi-

agent deep reinforcement learning context. However, while LDDQNs are more

robust than HDDQNs within this setting, upon increasing the stochasticity the

learning dynamics of LDDQNs are less consistent. We hypothesize that stochas-

ticity in this setting is causing optimal policy destruction [209], where oscillating

Q-Values can cause the moving target problem, a pathology towards which LD-

DQN is vulnerable upon decaying the temperature values. We introduce (deep)

Q-learning with Negative Update Intervals (NUI-DDQN) as a means to mitigate

the noise induced by relative overgeneralization and stochasticity on utility values.

NUI-DDQN is designed for temporally-extended versions of team bimatrix games.

We show that NUI-DDQN is capable of identifying and discarding episodes that

end in miscoordination within the AFG. In doing so, NUI-DDQN reduces the

noise introduced by the large punishments that result from miscoordination. We

show that NUI-DDQN consistently converges towards the optimal joint-policy

within each setting. Furthermore, we introduce a stateless version of NUI-DDQN

capable of converging on optimal joint-polices within all the n-player repeated

strategic-form games used for our empirical re-evaluations in Chapter 4. Similar

Chapter 8. Conclusion 146

to SDLQ we achieve this convergence rate across setting with only one hyperpa-

rameter configuration. However, in contrast to SDLQ the learners do not rely on

synchronized leniency updates.

8.2 Summarising

This thesis contributes towards a better understanding of the challenges faced by inde-

pendent learners within temporally extended high-dimensional domains that require a

multi-agent deep reinforcement learning approach. Furthermore, our work in Chapters

4 and 5 provides valuable insights regarding the extent to which the moving-target

and alter-exploration problems prevent lenient learners from consistent convergence

upon correct joint-policies within repeated n-player single-stage strategic-form games

suffering from relative overgeneralization and stochastic rewards. Our contributions in-

clude a number of novel independent learning approaches to address these challenges,

namely (Synchronized) Distributed Lenient Q-learning (Chapter 5), Lenient (Double)

DQN (Section 6.3), Scheduled Hysteretic (Double) DQN (Section 6.4), Q-Learning with

Negative Update Intervals (Section 7.1) and Negative Update Intervals DDQN (Section

7.3). In our empirical evaluations we find that each approach improves on the previous

state of the art for a number of multi-agent reinforcement learning challenges. However,

while significant progress has been made, we are unable to identify an approach that rep-

resents a silver bullet. Indeed, as discussed throughout this thesis, a compromise is often

necessary to enable independent learners to overcome multi-agent learning pathologies

within different settings. In the final section of this thesis we consider the limitations of

our algorithms, and how these can be addressed in future work.

8.3 Limitations and Future Work

While we introduce novel algorithms towards addressing independent learning patholo-

gies, we find each approach works only under specific conditions. Synchronized-DLQ

relies on the synchronized property, which is difficult to enforce within real world do-

mains [91]. Furthermore, in Section 5.4.2 we identify a reward space where synchronized

updates result in independent learners switching between sub-optimal policies. Further

considerations are required to address this issue. Through introducing a retroactive

temperature decay schedule (TDS) that prevents premature temperature cooling, and a

T (ot)-Greedy exploration strategy, our Lenient (Double) DQN approximately replicates

the staggered temperature decay used by DLQ. However, we find LDDQN is vulnerable

towards relative overgeneralization in domains with increased stochasticity, as evident

from our results in Section 7.5.6. Therefore, improving the robustness of DLQ within

Markov games, and subsequently scaling the approach to multi-agent deep reinforcement

learning presents an interesting challenge for future research.

Chapter 8. Conclusion 147

Q-learning with Negative Update Intervals is currently designed for the set of n-player

strategic-form games where Assumption 1 holds. Meanwhile, the scaled version, NUI-

DDQN, is limited to temporally-extended versions of team bimatrix games. As discussed

in Section 7.6, we feel that the next step for this algorithm is to add extensions capable

of identifying the higher level actions that an agent’s policy implemented throughout the

course of an episode, allowing the learners to maintaining negative update intervals for

different types of state-transition trajectories. Furthermore, NUI-DDQN is designed for

environments that confront independent learners with relative overgeneralization. We

consider that the algorithm is likely to struggle in domains with coordination challenges.

For instance, little is to be gained from using NUI-DDQN within the narrow-passage

CMOTP (Section 6.5.1), where, due to there only being one type of trajectory, the

learners default to (Double) DQNs. Implementing hybrid approaches for domains that

include both of these challenges could represent an interesting topic for future work in

this area, e.g., combining negative update interval with a lenient loss function.

We consider that within high-dimensional temporally extended domains there exists

significant scope for visualizing and interpreting the policies learned by the independent

learners. We hypothesize that methods for visualizing and understanding deep reinforce-

ment learning agents provide a means through which to gain insights into the extent

to which independent learners are aware of each other, e.g., while independent learning

agents are not explicitly aware of each others’ actions, they do have the potential to

implicitly infer the actions taken by other agents through limited observations. For ex-

ample, Mordatch and Abbeel [131] observe that decentralized learning agents incapable

of explicit communication often learn to communicate via cues.

Recently there have been interesting breakthroughs in the area of visualizing and

understanding deep reinforcement learning agents, for instance, by using saliency maps

[58, 132]. Via these maps salient features within the environment can be identified

that determine an agent’s actions. Much can be learned from these saliency maps

within a multi-agent deep reinforcement learning context. We have begun our own

attempts at visualizing the policies learnt by agents within the Apprentice Firemen

Game with a shared pickup area. We have interesting preliminary findings, where

the saliency maps of learners that we class as followers (who wait for the other agent

to make their selection) show higher saliency scores towards the coordinates of the

other agent prior to their equipment selection, compared to after the pick-up task has

been completed. Upon completing the pick-up task meanwhile we observe an increase

in the saliency scores towards the fires within the environment. These preliminary

findings raise interesting questions. For instance, can we predict if two agents who have

converged upon an optimal joint-policy will remain optimal when separated and paired

with different teammates (who have potentially learned a different set of cues)? We

hypothesize that this methodology may path a way for further studying the non-verbal

communication behaviours discussed by Mordatch and Abbeel [131], and look forward

to continuing this line of work.

Chapter 8. Conclusion 148

A further issue that needs addressing within multi-agent reinforcement learning is

a more centralized approach towards maintaining scores from benchmarking. This in

particular is highlighted by the extensive hyperparameter search conducted by Wei and

Luke [209], and the fact that 7 years prior Matignon et al. [122] already found a more

optimal set of hyperparameters within the Partially Stochastic Climb Game for decen-

tralized and hysteretic Q-learners. Given that over the coming years there is likely

to be an explosion in the number of domains for evaluating different approaches (and

paradigms) of multi-agent deep reinforcement learning, efforts are required to ensure

that work is not repeated. The community could, for instance, benefit from following

the examples of computer vision and single agent deep reinforcement learning, where

leader-boards are maintained for standard benchmarking tasks.

We observe that our work has already inspired researchers to investigate the advan-

tages of applying leniency to multi-agent deep reinforcement learning. Zheng et al. [221]

introduce a Weighted Double-DQN that makes use of a lenient reward network along

with a scheduled replay strategy to improve the convergence rate within stochastic co-

operative environments. Gong et al. [54] combined our retroactive temperature decay

schedule, T (ot)-Greedy exploration strategy and leniency augmented experience replay

memory tuples with synchronous n-step methods (advantage actor-critic) to strike a

balance between using potentially obsolete state transitions during training, proposing

a lenient ERM-helped synchronous n-step deep Q-network (LESnDQN), finding that

LESnDQN is more sample efficient on the CMOTP. Finally, Lu and Amato [110] pro-

pose a distributional reinforcement learning approach towards improving decentralized

hysteretic deep reinforcement learning’s vulnerability towards stochastic rewards. A

time difference likelihood (TDL) measure is used to guide the choice of learning rate

for each update, thereby controlling the amount of optimism applied by the learners.

The TDL enables the learners to estimate if the transition occurred with an exploratory

teammate, and if therefore a lower learning rate should be applied. The authors find

their resulting Likelihood Hysteretic Implicit Quantile Network (IH-IQN) to be easier

to tune and more sample efficient than LDQN within the CMOTP variations and a

meeting-in-a-grid task.

Despite the limitations discussed in this section, our work introduces a number of ex-

tensions to the start of the art of multi-agent (deep) reinforcement learning research. We

propose a multitude of approaches towards mitigating multi-agent learning pathologies,

while also visualizing why these methods have an advantage over previous approaches.

While we have been unable to provide a silver bullet toward multi-agent (deep) rein-

forcement learning pathologies, we hope that the material in this thesis paves the way for

future research in this vast area, in particular in the exciting young field of multi-agent

deep reinforcement learning.

Appendix A

Strategic-Form Game Results

In this section we provide visualisations for all hyperparameter configurations used

during our n-player repeated strategic form game evaluations of LMRL2, LRML3, Q-

learning with NUI, hysteretic Q-learning, FMQ and RFMQ in Chapters 4, 5 and 7. As

in previous sections we provide heat-maps illustrating the correct run percentage for

each hyperparameter configuration for each algorithm. For each plot we provide the

algorithm, game, penalty scaling factor (PSF), and the number of agents.

A.1 Frequency Maximum Q-value

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.1: Algorithm: FMQ, Game: The Penalty Game

149

Appendix A. Strategic-Form Game Results 150

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.2: Algorithm: FMQ, Game: The Climb Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.3: Algorithm: FMQ, Game: The Partially Stochastic Climb Game

Appendix A. Strategic-Form Game Results 151

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.4: Algorithm: FMQ, Game: The Fully Stochastic Climb Game

Appendix A. Strategic-Form Game Results 152

A.2 Recursive Frequency Maximum Q-value

(a) PG, Agents: 2 (b) PG, Agents: 4

(c) CG, Agents: 2 (d) CG, Agents: 4

(e) PSCG, Agents: 2 (f) PSCG, Agents: 4

(g) FSCG, Agents: 2 (h) FSCG, Agents: 4

Figure A.5: RFMQ results for the Penalty Game (PG), Climb Game (CG),
Partially Stochastic Climb Game (PSCG), and Fully Stochastic Climb Game (FSCG)

Appendix A. Strategic-Form Game Results 153

A.3 Hysteretic Q-learning

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.6: Algorithm: Hysteretic Q-learning, Game: The Penalty Game,
Exploration: Boltzmann, MaxTemp = 50

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.7: Algorithm: Hysteretic Q-learning, Game: The Penalty Game,
Exploration: Boltzmann, MaxTemp = 500

Appendix A. Strategic-Form Game Results 154

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.8: Algorithm: Hysteretic Q-learning, Game: The Penalty Game,
Exploration: Boltzmann, MaxTemp = 5000

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.9: Algorithm: Hysteretic Q-learning, Game: The Climb Game,
Exploration: Boltzmann, MaxTemp = 50

Appendix A. Strategic-Form Game Results 155

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.10: Algorithm: Hysteretic Q-learning, Game: The Climb Game,
Exploration: Boltzmann, MaxTemp = 500

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.11: Algorithm: Hysteretic Q-learning, Game: The Climb Game,
Exploration: Boltzmann, MaxTemp = 5000

Appendix A. Strategic-Form Game Results 156

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.12: Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic
Climb Game, Exploration: Boltzmann, MaxTemp = 50

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.13: Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic
Climb Game, Exploration: Boltzmann, MaxTemp = 500

Appendix A. Strategic-Form Game Results 157

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.14: Algorithm: Hysteretic Q-learning, Game: The Partially Stochastic
Climb Game, Exploration: Boltzmann, MaxTemp = 5000

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.15: Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb
Game, Exploration: Boltzmann, MaxTemp = 50

Appendix A. Strategic-Form Game Results 158

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.16: Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb
Game, Exploration: Boltzmann, MaxTemp = 500

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.17: Algorithm: Hysteretic Q-learning, Game: The Fully Stochastic Climb
Game, Exploration: Boltzmann, MaxTemp = 5000

Appendix A. Strategic-Form Game Results 159

A.4 Lenient Multi-Agent Reinforcement Learning

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.18: Algorithm: LMRL2, Game: The Penalty Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.19: Algorithm: LMRL2, Game: The Climb Game

Appendix A. Strategic-Form Game Results 160

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.20: Algorithm: LMRL2, Game: The Partially Stochastic Climb Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.21: Algorithm: LMRL2, Game: The Fully Stochastic Climb Game

Appendix A. Strategic-Form Game Results 161

A.5 Synchronized Distributed-Lenient Q-learning

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.22: Algorithm: SDLQ, Game: The Penalty Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.23: Algorithm: SDLQ, Game: The Climb Game

Appendix A. Strategic-Form Game Results 162

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.24: Algorithm: SDLQ, Game: The Partially Stochastic Climb Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.25: Algorithm: SDLQ, Game: The Fully Stochastic Climb Game

Appendix A. Strategic-Form Game Results 163

A.6 Asynchronized Distributed-Lenient Q-learning

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.26: Algorithm: ADLQ, Game: The Penalty Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.27: Algorithm: ADLQ, Game: The Climb Game

Appendix A. Strategic-Form Game Results 164

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.28: Algorithm: ADLQ, Game: The Partially Stochastic Climb Game

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.29: Algorithm: ADLQ, Game: The Fully Stochastic Climb Game

Appendix A. Strategic-Form Game Results 165

A.7 Q-learning with Negative Update Intervals

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: Hight

Figure A.30: Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In
Steps: 1000

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.31: Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In
Steps: 500

Appendix A. Strategic-Form Game Results 166

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.32: Algorithm: Q-learning with NUI, Game: The Penalty Game, Burn-In
Steps: 100

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.33: Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In
Steps: 1000

Appendix A. Strategic-Form Game Results 167

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.34: Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In
Steps: 500

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.35: Algorithm: Q-learning with NUI, Game: The Climb Game, Burn-In
Steps: 100

Appendix A. Strategic-Form Game Results 168

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.36: Algorithm: Q-learning with NUI, Game: The Partially Stochastic
Climb Game, Burn-In Steps: 1000

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.37: Algorithm: Q-learning with NUI, Game: The Partially Stochastic
Climb Game, Burn-In Steps: 500

Appendix A. Strategic-Form Game Results 169

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.38: Algorithm: Q-learning with NUI, Game: The Partially Stochastic
Climb Game, Burn-In Steps: 100

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.39: Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb
Game, Burn-In Steps: 1000

Appendix A. Strategic-Form Game Results 170

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.40: Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb
Game, Burn-In Steps: 500

(a) Agents: 2, PSF: Low (b) Agents: 2, PSF: Medium (c) Agents: 2, PSF: High

(d) Agents: 4, PSF: Low (e) Agents: 4, PSF: Medium (f) Agents: 4, PSF: High

Figure A.41: Algorithm: Q-learning with NUI, Game: The Fully Stochastic Climb
Game, Burn-In Steps: 100

Appendix A. Strategic-Form Game Results 171

A.8 Results Summary

In the table below we provide a summary of the highest convergence rate achieved by

each algorithm within each setting using tuned hyperparameters:

Game Agents Penalty NUI SDLQ ADLQ LMRL2 Hysteretic Q-learning FMQ RFMQ

Penalty Game

2

Low 100% 100% 100% 100% 100% 100% 100% 100%

Medium 100% 100% 100% 100% 100% 99.9% 100% 91.2%

High 100% 100% 100% 100% 100% NA 100% 0.6%

4

Low 100% 100% 100% 100% 100% NA 100% 89.0%

Medium 100% 100% 100% 100% 100% NA 100% 67.7%

High 100% 100% 100% 99.9% 100% NA 99.4% 24.8%

Climb Game

2

Low 100% 100% 100% 100% 100% 24.0% 100% 99.9%

Medium 100% 100% 100% 100% 100% NA 97.5% 69.6%

High 100% 100% 100% 100% 100% NA 50.8% 0%

4

Low 100% 100% 100% 100% 100% NA 45.2% 29.9%

Medium 100% 100% 100% 98.3% 97.8% NA 45.1% 36.8%

High 100% 100% 100% 98.1% 50.3% NA 29.2% 7.3%

Partially Stochastic Climb Game

2

Low 100% 100% 100% 100% 87% 28.2% 100% 99.4%

Medium 100% 100% 100% 99.9% 70.3% NA 97.3% 64.5%

High 100% 100% 100% 100% 69.5% NA 48.1% 0%

4

Low 100% 100% 100% 100% 63.9% NA 43.4% 27.6%

Medium 100% 100% 100% 72.2% 62.3% NA 45.6% 37.7%

High 100% 100% 100% 73.2% 50.9% NA 32.4% 7.9%

Fully Stochastic Climb Game

2

Low 100% 100% 100% 90.2% 37.5% 26.8% 25.4% 64.7%

Medium 100% 100% 93.3% 62.0% 25.2% NA 24% 0%

High 100% 100% 99.6% 56.8% 21.9% NA 6.9% 0%

4

Low 100% 100% 83.5% 96.3% 33.4% NA 8.6% 53.5%

Medium 100% 100% 87.1% 92.3% 26.5% NA 7.3% 1.9%

High 100% 100% 98.9% 90.94% 13.7% NA 7.4% 1.8%

Table A.1: Summary of the best results achieved using tuned hyperparameter
configurations. Boldface indicates evaluation that resulted in the (joint) highest

convergence rate. For decentralized Q-learning we only conduct experiments using the
low-reward two-player games, with the exception of the Penalty Game. This is due to

decentralized Q-learning’s exhibiting low convergence rates, even in the low-reward
setting. For RFMQ we note that the results can be improved by (significantly)

increasing the number of training iterations, as discussed in Section 4.4.3.

Appendix B

Apprentice Firemen Game

Experiment Details & Evaluations

B.1 Hyperparameters

Table B.1 lists the hyperparameters used for our empirical evaluation in Chapter 7.

To reduce the time required to evaluate LDDQN we apply python’s xxhash to masked

observations (i.e., removing civilians).

Component Hyperparameter Range of values

DDQN Base

Learning rate α 0.0001

Discount rate γ 0.95

Target network sync. steps 5000

ERM Size 250’000

ε-Greedy Exploration

Initial ε value 1.0

ε Decay factor 0.999

Minimum ε Value 0.05

Leniency

MaxTemperature 1.0

Leniency Modification Coefficient K 1.0

TDS Exponent ρ -0.1

TDS Exponent Decay Rate d 0.95

Initial Max Temperature Value ν 1.0

Max Temperature Decay Coefficient µ 0.9998

Action Selection Exponent 0.25

Hashing xxhash

NUI-DDQN
ERMu Capacity 100 Episodes

Decay threshold 50 Episodes

rminu decay rate 0.995

Table B.1: Hyper-parameters

B.2 Learning Best Response Policies

Table B.2 provides additional RC scatter plots for each evaluation setting. Each marker

within the scatter plots represents the RC for an individual run. To provide further

clarity we sort the runs by RC. We observe that for the majority of settings higher

RC values are achieved by agents in layout 1. Interestingly only HDDQN (β = 0.5,

PS Rewards) and LDDQN (DET & PS Rewards) achieved higher RC values in layout

2. NUI-DDQNs meanwhile perform consistently when receiving deterministic and PS

rewards, while a couple of runs faltered for FS rewards within layout 2. It is worth

173

Appendix B. Apprentice Firemen Game Experiment Details & Evaluations 174

noting that even for NUI-DDQN runs with low RC, (A,A) remains a frequently observed

outcome:

HDQN (β = 0.5) HDQN (β = 0.7) HDQN (β = 0.9) LDDQN NUI-DDQN

DET

PS

FS

Table B.2: Scatter plots illustrating the average coordinated reward RC for each
training run. The x-axis is sorted by RC values.

B.3 LDDQN Variable Access Points Experiments

Figure B.1 illustrates the AFG layouts used for the evaluations discussed in Section

7.5.6. We also provide the resulting phase plot for each layout.

(a) 1 Access Point (b) 2 Access Points (c) 3 Access Points (d) 4 Access Points

(e) 1 Access Point (f) 2 Access Points (g) 3 Access Points (h) 4 Access Points

Figure B.1: Phase plots illustrate delayed convergence of LDDQNs as a result
of increasing the number of possible state-action pairs.

Bibliography

[1] Dilip Abreu, David Pearce, and Ennio Stacchetti, Toward a theory of discounted

repeated games with imperfect monitoring, Econometrica: Journal of the Econo-

metric Society (1990), 1041–1063.

[2] TP Imthias Ahamed, Vivek S Borkar, and S Juneja, Adaptive importance sampling

technique for markov chains using stochastic approximation, Operations Research

54 (2006), no. 3, 489–504.

[3] Mazda Ahmadi and Peter Stone, A multi-robot system for continuous area sweep-

ing tasks, Proceedings 2006 IEEE International Conference on Robotics and Au-

tomation, 2006. ICRA 2006., IEEE, 2006, pp. 1724–1729.

[4] Stefano V Albrecht and Peter Stone, Reasoning about hypothetical agent behaviours

and their parameters, Proceedings of the 16th Conference on Autonomous Agents

and MultiAgent Systems, International Foundation for Autonomous Agents and

Multiagent Systems, 2017, pp. 547–555.

[5] Eduardo Alonso, Mark D’inverno, Daniel Kudenko, Michael Luck, and Jason

Noble, Learning in multi-agent systems, The Knowledge Engineering Review 16

(2001), no. 3, 277–284.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-

thony Bharath, A brief survey of deep reinforcement learning, arXiv preprint

arXiv:1708.05866 (2017).

[7] Pierre-Luc Bacon, Jean Harb, and Doina Precup, The option-critic architecture.,

Proc. of AAAI, 2017, pp. 1726–1734.

[8] Tucker Balch and Ronald C Arkin, Communication in reactive multiagent robotic

systems, Autonomous robots 1 (1994), no. 1, 27–52.

[9] Nikos Barbalios and Panagiotis Tzionas, A robust approach for multi-agent nat-

ural resource allocation based on stochastic optimization algorithms, Applied Soft

Computing 18 (2014), 12–24.

[10] Enda Barrett, Enda Howley, and Jim Duggan, Applying reinforcement learning

towards automating resource allocation and application scalability in the cloud,

175

Bibliography 176

Concurrency and Computation: Practice and Experience 25 (2013), no. 12, 1656–

1674.

[11] Andrew Barto and Richard Sutton, Reinforcement learning: An introduction, MIT

press, 1998.

[12] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling, The ar-

cade learning environment: An evaluation platform for general agents, Journal of

Artificial Intelligence Research 47 (2013), 253–279.

[13] Richard Bellman, A markovian decision process, Journal of Mathematics and Me-

chanics (1957), 679–684.

[14] Huang Bing-Qiang, Cao Guang-Yi, and Guo Min, Reinforcement learning neu-

ral network to the problem of autonomous mobile robot obstacle avoidance., 2005

International Conference on Machine Learning & Cybernetics (2005), 85.

[15] Daan Bloembergen, Daniel Hennes, Michael Kaisers, and Karl Tuyls, Evolution-

ary dynamics of multi-agent learning: A survey., Journal of Artificial Intelligence

Research 53 (2015), 659–697.

[16] Daan Bloembergen, Daniel Hennes, Peter McBurney, and Karl Tuyls, Trading in

markets with noisy information: An evolutionary analysis, Connection Science 27

(2015), no. 3, 253–268.

[17] Daan Bloembergen, Michael Kaisers, and Karl Tuyls, Lenient frequency adjusted

q-learning, Proc. of 22nd Belgium-Netherlands Conf. on Artif. Intel, 2010.

[18] , Empirical and theoretical support for lenient learning, Proc. of AAMAS,

2011, pp. 1105–1106.

[19] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers, Evolution-

ary dynamics of multi-agent learning: A survey, Journal of Artificial Intelligence

Research 53 (2015), 659–697.

[20] Michael Bowling and Manuela Veloso, Multiagent learning using a variable learning

rate, Artificial Intelligence 136 (2002), no. 2, 215–250.

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba, Openai gym, 2016.

[22] Bastian Broecker, Karl Tuyls, and James Butterworth, Distance-based multi-robot

coordination on pocket drones, 2018 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2018, pp. 6389–6394.

[23] Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko,

and Ann Nowé, Multi-objectivization of reinforcement learning problems by reward

shaping, 2014 international joint conference on neural networks (IJCNN), IEEE,

2014, pp. 2315–2322.

Bibliography 177

[24] John Burden and Daniel Kudenko, Using uniform state abstractions for reward

shaping with reinforcement learning, Workshop on Adaptive Learning Agents

(ALA) at the Federated AI Meeting, vol. 18, 2018.

[25] Lucian Busoniu, Robert Babuska, and Bart De Schutter, A comprehensive survey

of multiagent reinforcement learning, IEEE Transactions on Systems, Man, And

Cybernetics-Part C: Applications and Reviews, 38 (2), 2008 (2008).

[26] Lucian Buşoniu, Robert Babuška, and Bart De Schutter, Multi-agent reinforce-

ment learning: An overview, Innovations in multi-agent systems and applications-

1, Springer, 2010, pp. 183–221.

[27] James Butterworth, Bastian Broecker, Karl Tuyls, and Paolo Paoletti, Evolving

coverage behaviours for mavs using neat, Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems, International Foun-

dation for Autonomous Agents and Multiagent Systems, 2018, pp. 1886–1888.

[28] Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson, The

representational capacity of action-value networks for multi-agent reinforcement

learning, Proceedings of the 18th International Conference on Autonomous Agents

and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019,

2019, pp. 1862–1864.

[29] Georgios Chalkiadakis and Craig Boutilier, Coordination in multiagent reinforce-

ment learning: a bayesian approach, Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, ACM, 2003, pp. 709–

716.

[30] Moses S Charikar, Similarity estimation techniques from rounding algorithms, Pro-

ceedings of the thiry-fourth annual ACM symposium on Theory of computing,

ACM, 2002, pp. 380–388.

[31] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How, Decentralized non-

communicating multiagent collision avoidance with deep reinforcement learning,

2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE,

2017, pp. 285–292.

[32] Daniel Claes, Daniel Hennes, Karl Tuyls, and Wim Meeussen, Collision avoidance

under bounded localization uncertainty, 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, IEEE, 2012, pp. 1192–1198.

[33] Caroline Claus and Craig Boutilier, The dynamics of reinforcement learning in

cooperative multiagent systems, In AAAI/IAAI 1998 (1998), 746–752.

[34] Ronan Collobert and Jason Weston, A unified architecture for natural language

processing: Deep neural networks with multitask learning, Proceedings of the 25th

international conference on Machine learning, ACM, 2008, pp. 160–167.

Bibliography 178

[35] Jacob W Crandall, Just add pepper: extending learning algorithms for repeated ma-

trix games to repeated markov games, Proceedings of the 11th International Con-

ference on Autonomous Agents and Multiagent Systems-Volume 1, International

Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 399–406.

[36] , Towards minimizing disappointment in repeated games, Journal of Artifi-

cial Intelligence Research 49 (2014), 111–142.

[37] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuška, The importance

of experience replay database composition in deep reinforcement learning, Deep

Reinforcement Learning Workshop, NIPS, 2015.

[38] Sam Devlin and Daniel Kudenko, Theoretical considerations of potential-based re-

ward shaping for multi-agent systems, The 10th International Conference on Au-

tonomous Agents and Multiagent Systems-Volume 1, International Foundation for

Autonomous Agents and Multiagent Systems, 2011, pp. 225–232.

[39] Sam Devlin, Daniel Kudenko, and Marek Grześ, An empirical study of potential-

based reward shaping and advice in complex, multi-agent systems, Advances in

Complex Systems 14 (2011), no. 02, 251–278.

[40] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer, Potential-based

difference rewards for multiagent reinforcement learning, Proceedings of the 2014

international conference on Autonomous agents and multi-agent systems, Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2014, pp. 165–

172.

[41] Martin Duggan, Jim Duggan, Enda Howley, and Enda Barrett, A reinforcement

learning approach for the scheduling of live migration from under utilised hosts,

Memetic Computing 9 (2017), no. 4, 283–293.

[42] Martin Duggan, Kieran Flesk, Jim Duggan, Enda Howley, and Enda Barrett,

A reinforcement learning approach for dynamic selection of virtual machines in

cloud data centres, 2016 Sixth International Conference on Innovative Computing

Technology (INTECH), IEEE, 2016, pp. 92–97.

[43] Norbert Elias and Eric Dunning, Dynamics of group sports with special reference

to football, The British Journal of Sociology 17 (1966), no. 4, 388–402.

[44] Mohamed Elidrisi, Nicholas Johnson, Maria Gini, and Jacob Crandall, Fast adap-

tive learning in repeated stochastic games by game abstraction, Proceedings of the

2014 international conference on Autonomous agents and multi-agent systems, In-

ternational Foundation for Autonomous Agents and Multiagent Systems, 2014,

pp. 1141–1148.

Bibliography 179

[45] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-

son, Learning to communicate with deep multi-agent reinforcement learning, Ad-

vances in Neural Information Processing Systems, 2016, pp. 2137–2145.

[46] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,

Philip HS Torr, Pushmeet Kohli, and Shimon Whiteson, Stabilising experience

replay for deep multi-agent reinforcement learning, Proc. of ICML, 2017, pp. 1146–

1155.

[47] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,

and Shimon Whiteson, Counterfactual multi-agent policy gradients, Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

[48] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle

Pineau, et al., An introduction to deep reinforcement learning, Foundations and

Trends R© in Machine Learning 11 (2018), no. 3-4, 219–354.

[49] Jordan Frank, Shie Mannor, and Doina Precup, Reinforcement learning in the

presence of rare events, Proceedings of the 25th international conference on Ma-

chine learning, ACM, 2008, pp. 336–343.

[50] Nancy Fulda and Dan Ventura, Predicting and preventing coordination problems

in cooperative Q-learning systems, IJCAI, vol. 2007, 2007, pp. 780–785.

[51] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta, Learning to fly by crashing, 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2017, pp. 3948–3955.

[52] Jon Gauthier and Igor Mordatch, A paradigm for situated and goal-driven language

learning, arXiv preprint arXiv:1610.03585 (2016).

[53] Herbert Gintis, Game theory evolving: A problem-centered introduction to model-

ing strategic behavior, Princeton university press, 2000.

[54] Xudong Gong, Bo Ding, Jie Xu, Huaimin Wang, Xing Zhou, and Dawei Feng,

Parallelized synchronous multi-agent deep reinforcement learning with experience

replay memory, 2019 IEEE International Conference on Service-Oriented System

Engineering (SOSE), IEEE, 2019, pp. 325–3255.

[55] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT Press,

2016, http://www.deeplearningbook.org.

[56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio, Generative adversarial nets,

Proc. of NIPS, 2014, pp. 2672–2680.

http://www.deeplearningbook.org

Bibliography 180

[57] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio, An

empirical investigation of catastrophic forgetting in gradient-based neural networks,

arXiv preprint arXiv:1312.6211 (2013).

[58] Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern, Visualizing

and understanding atari agents, International Conference on Machine Learning,

2018, pp. 1787–1796.

[59] Marek Grzes and Daniel Kudenko, Learning potential for reward shaping in re-

inforcement learning with tile coding, Proceedings AAMAS 2008 Workshop on

Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS-ALAg 2008),

2008, pp. 17–23.

[60] , Plan-based reward shaping for reinforcement learning, 2008 4th Interna-

tional IEEE Conference Intelligent Systems, vol. 2, IEEE, 2008, pp. 10–22.

[61] , Learning shaping rewards in model-based reinforcement learning, Proc.

AAMAS 2009 Workshop on Adaptive Learning Agents, vol. 115, 2009.

[62] Marek Grześ and Daniel Kudenko, Online learning of shaping rewards in rein-

forcement learning, Neural Networks 23 (2010), no. 4, 541–550.

[63] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine, Deep reinforce-

ment learning for robotic manipulation with asynchronous off-policy updates, arXiv

preprint arXiv:1610.00633 (2016).

[64] Carlos Guestrin, Daphne Koller, and Ronald Parr, Multiagent planning with fac-

tored mdps, Advances in neural information processing systems, 2002, pp. 1523–

1530.

[65] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville, Improved training of wasserstein gans, Advances in neural

information processing systems, 2017, pp. 5767–5777.

[66] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer, Cooperative multi-

agent control using deep reinforcement learning, Proceedings of the Adaptive and

Learning Agents workshop (at AAMAS 2017), 2017.

[67] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine, Reinforcement

learning with deep energy-based policies, arXiv preprint arXiv:1702.08165 (2017).

[68] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor, International Conference on Machine Learning, 2018, pp. 1856–1865.

[69] John C Harsanyi, Games with incomplete information played by “bayesian” play-

ers, i–iii part i. the basic model, Management science 14 (1967), no. 3, 159–182.

Bibliography 181

[70] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, S Kalyanakr-

ishnan, and P Stone, Half field offense: an environment for multiagent learning

and ad hoc teamwork, AAMAS Adaptive Learning Agents (ALA) Workshop, 2016.

[71] Matthew Hausknecht and Peter Stone, Deep recurrent q-learning for partially ob-

servable mdps, arXiv preprint arXiv:1507.06527 (2015).

[72] , Deep reinforcement learning in parameterized action space, arXiv preprint

arXiv:1511.04143 (2015).

[73] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III, Opponent modeling

in deep reinforcement learning, International Conference on Machine Learning,

2016, pp. 1804–1813.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual learning

for image recognition, Proc. of CVPR, 2016, pp. 770–778.

[75] Johannes Heinrich and David Silver, Deep reinforcement learning from self-play in

imperfect-information games, arXiv preprint arXiv:1603.01121 (2016).

[76] Daniel Hennes, Daan Bloembergen, Michael Kaisers, Karl Tuyls, and Simon Par-

sons, Evolutionary advantage of foresight in markets, Proceedings of the 14th an-

nual conference on Genetic and evolutionary computation, ACM, 2012, pp. 943–

950.

[77] Pablo Hernandez-Leal and Michael Kaisers, Towards a fast detection of opponents

in repeated stochastic games, Proc. of AAMAS, Springer, 2017, pp. 239–257.

[78] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz

de Cote, A survey of learning in multiagent environments: Dealing with non-

stationarity, arXiv preprint arXiv:1707.09183 (2017).

[79] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor, A survey and critique

of multiagent deep reinforcement learning, arXiv preprint arXiv:1810.05587 (2018).

[80] , Agent modeling as auxiliary task for deep reinforcement learning, arXiv

preprint arXiv:1907.09597 (2019).

[81] Josef Hofbauer and Jörgen W Weibull, Evolutionary selection against dominated

strategies, Journal of economic theory 71 (1996), no. 2, 558–573.

[82] Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi

Lee, A deep policy inference q-network for multi-agent systems, Proceedings of the

17th International Conference on Autonomous Agents and MultiAgent Systems,

International Foundation for Autonomous Agents and Multiagent Systems, 2018,

pp. 1388–1396.

Bibliography 182

[83] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayam-

pallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-

Yue, et al., An empirical evaluation of deep learning on highway driving, arXiv

preprint arXiv:1504.01716 (2015).

[84] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa, Globally and locally con-

sistent image completion, ACM Transactions on Graphics (TOG) 36 (2017), no. 4,

107.

[85] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh, Convergence of stochas-

tic iterative dynamic programming algorithms, Advances in neural information

processing systems, 1994, pp. 703–710.

[86] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra, Planning

and acting in partially observable stochastic domains, Artificial intelligence 101

(1998), no. 1-2, 99–134.

[87] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore, Reinforcement

learning: A survey, Journal of artificial intelligence research 4 (1996), 237–285.

[88] Michael Kaisers, Learning against learning. evolutionary dynamics of reinforce-

ment learning algorithms in strategic interactions, Ph.D. thesis, Maastricht Uni-

versity, 2012.

[89] Michihiro Kandori, The use of information in repeated games with imperfect mon-

itoring, The Review of Economic Studies 59 (1992), no. 3, 581–593.

[90] Spiros Kapetanakis and Daniel Kudenko, Reinforcement learning of coordination

in cooperative multi–agent systems, AAAI/IAAI 2002 (2002), 326–331.

[91] , Reinforcement learning of coordination in heterogeneous cooperative multi-

agent systems, Adaptive Agents and Multi-Agent Systems II, Springer, 2004,

pp. 119–131.

[92] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei, Large-scale video classification with convolutional neural

networks, Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, 2014, pp. 1725–1732.

[93] Woojun Kim, Myungsik Cho, and Youngchul Sung, Message-dropout: An effi-

cient training method for multi-agent deep reinforcement learning, arXiv preprint

arXiv:1902.06527 (2019).

[94] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization,

Proc. of ICLR, 2014.

[95] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, Imagenet classification

with deep convolutional neural networks, Proc. of NIPS, 2012, pp. 1097–1105.

Bibliography 183

[96] Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher, Semi-supervised learning

with gans: Manifold invariance with improved inference, Proc. of NIPS, 2017,

pp. 5540–5550.

[97] Guillaume Lample and Devendra Singh Chaplot, Playing fps games with deep

reinforcement learning, arXiv preprint arXiv:1609.05521 (2016).

[98] , Playing fps games with deep reinforcement learning., AAAI (2017), 2140–

2146.

[99] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel, A unified game-theoretic

approach to multiagent reinforcement learning, Advances in Neural Information

Processing Systems, 2017, pp. 4190–4203.

[100] Martin Lauer and Martin Riedmiller, An algorithm for distributed reinforcement

learning in cooperative multi-agent systems, In Proceedings of the Seventeenth

International Conference on Machine Learning, Citeseer, 2000.

[101] Guillaume J Laurent, Laëtitia Matignon, Le Fort-Piat, et al., The world of inde-

pendent learners is not markovian, International Journal of Knowledge-based and

Intelligent Engineering Systems 15 (2011), no. 1, 55–64.

[102] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni, Multi-agent coop-

eration and the emergence of (natural) language, arXiv preprint arXiv:1612.07182

(2016).

[103] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep learning, nature 521

(2015), no. 7553, 436.

[104] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-

pel, Multi-agent reinforcement learning in sequential social dilemmas, Proc. of

AAMAS, 2017, pp. 464–473.

[105] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra, Continuous control with

deep reinforcement learning, arXiv preprint arXiv:1509.02971 (2015).

[106] Long-Ji Lin, Self-improving reactive agents based on reinforcement learning, plan-

ning and teaching, Machine learning 8 (1992), no. 3-4, 293–321.

[107] , Reinforcement learning for robots using neural networks, Tech. report,

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[108] Michael L Littman, Markov games as a framework for multi-agent reinforcement

learning, Machine learning proceedings 1994, Elsevier, 1994, pp. 157–163.

Bibliography 184

[109] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-

datch, Multi-agent actor-critic for mixed cooperative-competitive environments,

Proc. of NIPS, 2017, pp. 6379–6390.

[110] Xueguang Lu and Christopher Amato, On improving decentralized hysteretic deep

reinforcement learning, arXiv preprint arXiv:1812.06319 (2018).

[111] Sean Luke, Liviu Panait, and Karl Tuyls, Theoretical advantages of lenient learn-

ers: An evolutionary game theoretic perspective, JMLR 9 (2008), 423–457.

[112] Michael W Macy and Andreas Flache, Learning dynamics in social dilemmas,

Proceedings of the National Academy of Sciences 99 (2002), no. suppl 3, 7229–

7236.

[113] Aleksandra Malysheva, Aleksei Shpilman, and Daniel Kudenko, Learning to run

with reward shaping from video data, Workshop on Adaptive Learning Agents

(ALA) at the Federated AI Meeting, vol. 18, 2018.

[114] Aleksandra Malysheva, Tegg Taekyong Sung, Chae-Bong Sohn, Daniel Kudenko,

and Aleksei Shpilman, Deep multi-agent reinforcement learning with relevance

graphs, arXiv preprint arXiv:1811.12557 (2018).

[115] Patrick Mannion, Jim Duggan, and Enda Howley, Parallel reinforcement learning

for traffic signal control, Procedia Computer Science 52 (2015), 956–961.

[116] , An experimental review of reinforcement learning algorithms for adaptive

traffic signal control, Autonomic Road Transport Support Systems, Springer, 2016,

pp. 47–66.

[117] , Generating multi-agent potential functions using counterfactual estimates,

Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS

2016) (2016).

[118] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso Garćıa, and Da-

vide Scaramuzza, Event-based vision meets deep learning on steering prediction

for self-driving cars, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 5419–5427.

[119] Michael Mathieu, Camille Couprie, and Yann LeCun, Deep multi-scale video pre-

diction beyond mean square error, arXiv preprint arXiv:1511.05440 (2015).

[120] Laëtitia Matignon, Guillaume Laurent, and Nadine Le Fort-Piat, Hysteretic Q-

Learning: an algorithm for decentralized reinforcement learning in cooperative

multi-agent teams, Proc. of IROS, 2007, pp. 64–69.

[121] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat, Coordination

of independent learners in cooperative markov games., (2009).

Bibliography 185

[122] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat, Independent

reinforcement learners in cooperative Markov games: a survey regarding coordina-

tion problems, The Knowledge Engineering Review 27 (2012), no. 1, 1–31.

[123] Tambet Matiisen, Pommerman baselines, https://github.com/tambetm/

pommerman-baselines, 2018.

[124] Gábor Melis, Chris Dyer, and Phil Blunsom, On the state of the art of evaluation

in neural language models, arXiv preprint arXiv:1707.05589 (2017).

[125] Mihail Mihaylov, Karl Tuyls, and Ann Nowé, A decentralized approach for con-

vention emergence in multi-agent systems, Autonomous Agents and Multi-Agent

Systems 28 (2014), no. 5, 749–778.

[126] W Thomas Miller, Paul J Werbos, and Richard S Sutton, Neural networks for

control, MIT press, 1995.

[127] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu, Asynchronous

methods for deep reinforcement learning, International conference on machine

learning, 2016, pp. 1928–1937.

[128] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller, Playing atari with deep rein-

forcement learning, arXiv preprint arXiv:1312.5602 (2013).

[129] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al., Human-level control through deep reinforcement learning, Nature

518 (2015), no. 7540, 529.

[130] Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani, and Jun-Seok Oh, Semisu-

pervised deep reinforcement learning in support of iot and smart city services, IEEE

Internet of Things Journal 5 (2018), no. 2, 624–635.

[131] Igor Mordatch and Pieter Abbeel, Emergence of grounded compositional language

in multi-agent populations, Thirty-Second AAAI Conference on Artificial Intelli-

gence, 2018.

[132] Sajad Mousavi, Michael Schukat, Enda Howley, Ali Borji, and Nasser Mozayani,

Learning to predict where to look in interactive environments using deep recurrent

q-learning, arXiv preprint arXiv:1612.05753 (2016).

[133] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley, Deep reinforce-

ment learning: an overview, Proceedings of SAI Intelligent Systems Conference,

Springer, 2016, pp. 426–440.

https://github.com/tambetm/pommerman-baselines
https://github.com/tambetm/pommerman-baselines

Bibliography 186

[134] , Traffic light control using deep policy-gradient and value-function-based

reinforcement learning, IET Intelligent Transport Systems 11 (2017), no. 7, 417–

423.

[135] Vinod Nair and Geoffrey E Hinton, Rectified linear units improve restricted boltz-

mann machines, Proc. of ICML, 2010, pp. 807–814.

[136] John Nash, Non-cooperative games, Annals of mathematics (1951), 286–295.

[137] Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere, Game theory and multi-

agent reinforcement learning, Reinforcement Learning, Springer, 2012, pp. 441–

470.

[138] Frans A Oliehoek, Christopher Amato, et al., A concise introduction to decentral-

ized pomdps, vol. 1, Springer, 2016.

[139] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis, Optimal and approxi-

mate q-value functions for decentralized pomdps, Journal of Artificial Intelligence

Research 32 (2008), 289–353.

[140] Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls,

Mark Rowland, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot,

Julien Perolat, and Remi Munos, {\alpha}-rank: Multi-agent evaluation by evolu-

tion, arXiv preprint arXiv:1903.01373 (2019).

[141] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and

John Vian, Deep decentralized multi-task multi-agent reinforcement learning under

partial observability, Proc. of ICML 70 (2017), 2681–2690.

[142] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy, Deep ex-

ploration via bootstrapped dqn, Advances in neural information processing systems,

2016, pp. 4026–4034.

[143] Gregory Palmer, Rahul Savani, and Karl Tuyls, Negative update intervals in deep

multi-agent reinforcement learning, arXiv preprint arXiv:1809.05096 (2018).

[144] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani, Lenient multi-

agent deep reinforcement learning, Proc. of AAMAS, 2018, pp. 443–451.

[145] Liviu Panait, Theoretical convergence guarantees for cooperative coevolutionary

algorithms, Evolutionary computation 18 (2010), no. 4, 581–615.

[146] Liviu Panait and Sean Luke, Cooperative multi-agent learning: The state of the

art, Autonomous agents and multi-agent systems 11 (2005), no. 3, 387–434.

[147] Liviu Panait, Keith Sullivan, and Sean Luke, Lenience towards teammates helps

in cooperative multiagent learning, Proc. of AAMAS, 2006.

Bibliography 187

[148] , Lenient learners in cooperative multiagent systems, Proc. of AAMAS,

ACM, 2006, pp. 801–803.

[149] Liviu Panait, Karl Tuyls, and Sean Luke, Theoretical advantages of lenient learn-

ers: An evolutionary game theoretic perspective, JMLR 9 (2008), no. Mar, 423–457.

[150] Lauren Parker, James Butterworth, and Shan Luo, Fly safe: Aerial swarm robotics

using force field particle swarm optimisation, arXiv preprint arXiv:1907.07647

(2019).

[151] Emanuele Pesce and Giovanni Montana, Improving coordination in multi-

agent deep reinforcement learning through memory-driven communication, arXiv

preprint arXiv:1901.03887 (2019).

[152] Mitchell A Potter and Kenneth A De Jong, A cooperative coevolutionary approach

to function optimization, International Conference on Parallel Problem Solving

from Nature, Springer, 1994, pp. 249–257.

[153] Martin L Puterman, Markov decision processes: discrete stochastic dynamic pro-

gramming, John Wiley & Sons, 2014.

[154] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, S. M. Ali Eslami,

and Matthew Botvinick, Machine theory of mind, Proc. of ICML (Jennifer Dy and

Andreas Krause, eds.), vol. 80, PMLR, 10–15 Jul 2018, pp. 4218–4227.

[155] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and

Matthew Botvinick, Machine theory of mind, International Conference on Machine

Learning, 2018, pp. 4215–4224.

[156] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus, Modeling others

using oneself in multi-agent reinforcement learning, International Conference on

Machine Learning, 2018, pp. 4254–4263.

[157] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-

quhar, Jakob Foerster, and Shimon Whiteson, Qmix: Monotonic value func-

tion factorisation for deep multi-agent reinforcement learning, arXiv preprint

arXiv:1803.11485 (2018).

[158] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen, Improved techniques for training gans, Proc. of NIPS, 2016, pp. 2234–

2242.

[159] Larry Samuelson, Evolutionary games and equilibrium selection, vol. 1, MIT press,

1998.

[160] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver, Prioritized expe-

rience replay, arXiv preprint arXiv:1511.05952 (2015).

Bibliography 188

[161] Benjamin Schnieders, Shan Luo, Gregory Palmer, and Karl Tuyls, Fully convo-

lutional one-shot object segmentation for industrial robotics, Proceedings of the

18th International Conference on Autonomous Agents and MultiAgent Systems,

International Foundation for Autonomous Agents and Multiagent Systems, 2019,

pp. 1161–1169.

[162] Benjamin Schnieders and Karl Tuvls, Fast convergence for object detection by

learning how to combine error functions, 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 7329–7335.

[163] Arturo Servin and Daniel Kudenko, Multi-agent reinforcement learning for intru-

sion detection, Adaptive Agents and Multi-Agent Systems III. Adaptation and

Multi-Agent Learning, Springer, 2005, pp. 211–223.

[164] , Multi-agent reinforcement learning for intrusion detection: A case study

and evaluation, German Conference on Multiagent System Technologies, Springer,

2008, pp. 159–170.

[165] Lloyd S Shapley, Stochastic games, Proceedings of the national academy of sciences

39 (1953), no. 10, 1095–1100.

[166] Rachael Shaw, Enda Howley, and Enda Barrett, An advanced reinforcement learn-

ing approach for energy-aware virtual machine consolidation in cloud data centers,

2017 12th International Conference for Internet Technology and Secured Transac-

tions (ICITST), IEEE, 2017, pp. 61–66.

[167] Yoav Shoham, Rob Powers, and Trond Grenager, If multi-agent learning is the

answer, what is the question?, Artificial Intelligence 171 (2007), no. 7, 365–377.

[168] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al., Mastering the game of go with deep neural networks

and tree search, nature 529 (2016), no. 7587, 484.

[169] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al., Mastering the game of go without human knowledge, Nature 550 (2017),

no. 7676, 354.

[170] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári, Con-

vergence results for single-step on-policy reinforcement-learning algorithms, Ma-

chine learning 38 (2000), no. 3, 287–308.

[171] Leon Sixt, Benjamin Wild, and Tim Landgraf, Rendergan: Generating realistic

labeled data, Frontiers in Robotics and AI 5 (2018), 66.

Bibliography 189

[172] John Maynard Smith, Evolution and the theory of games, Cambridge university

press, 1982.

[173] Richard Socher, Yoshua Bengio, and Christopher D Manning, Deep learning for nlp

(without magic), Tutorial Abstracts of ACL 2012, Association for Computational

Linguistics, 2012, pp. 5–5.

[174] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi, Qtran: Learning to factorize with transformation for cooperative multi-agent

reinforcement learning, International Conference on Machine Learning, 2019,

pp. 5887–5896.

[175] Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis, Market

making via reinforcement learning, Proceedings of the 17th International Confer-

ence on Autonomous Agents and MultiAgent Systems, International Foundation

for Autonomous Agents and Multiagent Systems, 2018, pp. 434–442.

[176] Bradly C Stadie, Sergey Levine, and Pieter Abbeel, Incentivizing exploration in re-

inforcement learning with deep predictive models, arXiv preprint arXiv:1507.00814

(2015).

[177] Peter Stone, Multiagent learning is not the answer. it is the question, Artificial

Intelligence 171 (2007), no. 7, 402–405.

[178] Peter Stone and Manuela Veloso, Multiagent systems: A survey from a machine

learning perspective, Autonomous Robots 8 (2000), no. 3, 345–383.

[179] Sainbayar Sukhbaatar, Rob Fergus, et al., Learning multiagent communication

with backpropagation, Advances in Neural Information Processing Systems, 2016,

pp. 2244–2252.

[180] Xin Sun, Junyu Shi, Junyu Dong, and Xinhua Wang, Fish recognition from low-

resolution underwater images, Image and Signal Processing, BioMedical Engi-

neering and Informatics (CISP-BMEI), International Congress on, IEEE, 2016,

pp. 471–476.

[181] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, and Thore Graepel, Value-decomposition networks for cooperative multi-

agent learning, arXiv preprint arXiv:1706.05296 (2017).

[182] Richard S Sutton, Generalization in reinforcement learning: Successful examples

using sparse coarse coding, Advances in neural information processing systems,

1996, pp. 1038–1044.

[183] Richard S Sutton and Andrew G Barto, Introduction to reinforcement learning,

vol. 135, MIT press Cambridge, 1998.

Bibliography 190

[184] , Reinforcement learning: An introduction, MIT press, 2018.

[185] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour,

Policy gradient methods for reinforcement learning with function approximation,

Advances in neural information processing systems, 2000, pp. 1057–1063.

[186] Richard S Sutton, Doina Precup, and Satinder Singh, Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning, Artificial

intelligence 112 (1999), no. 1-2, 181–211.

[187] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,

Juhan Aru, Jaan Aru, and Raul Vicente, Multiagent cooperation and competition

with deep reinforcement learning, PloS one 12 (2017), no. 4, e0172395.

[188] Ming Tan, Multi-agent reinforcement learning: Independent vs. cooperative agents,

Proceedings of the tenth international conference on machine learning, 1993,

pp. 330–337.

[189] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan

Duan, John Schulman, Filip DeTurck, and Pieter Abbeel, # exploration: A study

of count-based exploration for deep reinforcement learning, Proc. of NIPS, 2017,

pp. 2750–2759.

[190] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan

Duan, John Schulman, Filip De Turck, and Pieter Abbeel, # exploration: A

study of count-based exploration for deep reinforcement learning, arXiv preprint

arXiv:1611.04717 (2016).

[191] Gerald Tesauro, Extending q-learning to general adaptive multi-agent systems, Ad-

vances in neural information processing systems, 2004, pp. 871–878.

[192] Chen Tessler, Yonathan Efroni, and Shie Mannor, Action robust reinforcement

learning and applications in continuous control, arXiv preprint arXiv:1901.09184

(2019).

[193] Michel Tokic and Günther Palm, Value-difference based exploration: adaptive con-

trol between epsilon-greedy and softmax, Annual Conference on Artificial Intelli-

gence, Springer, 2011, pp. 335–346.

[194] Karl Tuyls and Ann Nowé, Evolutionary game theory and multi-agent reinforce-

ment learning, The Knowledge Engineering Review 20 (2005), no. 01, 63–90.

[195] Karl Tuyls and Simon Parsons, What evolutionary game theory tells us about

multiagent learning, Artificial Intelligence 171 (2007), no. 7, 406–416.

[196] Karl Tuyls, Julien Pérolat, Marc Lanctot, Georg Ostrovski, Rahul Savani, Joel Z

Leibo, Toby Ord, Thore Graepel, and Shane Legg, Symmetric decomposition of

asymmetric games, Scientific reports 8 (2018), no. 1, 1015.

Bibliography 191

[197] Karl Tuyls and P Stone, Multiagent learning paradigms, Multi-Agent Systems and

Agreement Technologies, Springer, 2017, pp. 3–21.

[198] Karl Tuyls, Katja Verbeeck, and Tom Lenaerts, A selection-mutation model for

q-learning in multi-agent systems, Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, ACM, 2003, pp. 693–

700.

[199] Karl Tuyls and Gerhard Weiss, Multiagent learning: Basics, challenges, and

prospects, Ai Magazine 33 (2012), no. 3, 41–41.

[200] Karl Tuyls and Gerhard Weiss, Multiagent learning: Basics, challenges, and

prospects, AI Magazine 33 (2012), no. 3, 41–52.

[201] Hado Van Hasselt, Double q-learning, Proc. of NIPS, 2010, pp. 2613–2621.

[202] Hado Van Hasselt, Arthur Guez, and David Silver, Deep reinforcement learning

with double Q-learning, CoRR, abs/1509.06461 (2015).

[203] , Deep reinforcement learning with double Q-Learning., AAAI (2016), 2094–

2100.

[204] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol,

Extracting and composing robust features with denoising autoencoders, Proceedings

of the 25th international conference on Machine learning, ACM, 2008, pp. 1096–

1103.

[205] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Ju-

lian Schrittwieser, et al., Starcraft ii: A new challenge for reinforcement learning,

arXiv preprint arXiv:1708.04782 (2017).

[206] Okko Jan Vrieze and Frank Thuijsman, On equilibria in repeated games with ab-

sorbing states, International Journal of Game Theory 18 (1989), no. 3, 293–310.

[207] Christopher JCH Watkins and Peter Dayan, Q-learning, Machine learning 8

(1992), no. 3-4, 279–292.

[208] Christopher John Cornish Hellaby Watkins, Learning from delayed rewards,

(1989).

[209] Ermo Wei and Sean Luke, Lenient learning in independent-learner stochastic co-

operative games, JMLR 17 (2016), no. 84, 1–42.

[210] Ermo Wei, Drew Wicke, David Freelan, and Sean Luke, Multiagent Soft Q-

Learning, arXiv preprint arXiv:1804.09817 (2018).

[211] Jörgen W Weibull, Evolutionary game theory, MIT press, 1997.

Bibliography 192

[212] R Paul Wiegand, An analysis of cooperative coevolutionary algorithms, Ph.D. the-

sis, Citeseer, 2003.

[213] David H Wolpert and Kagan Tumer, Optimal payoff functions for members of

collectives, Modeling complexity in economic and social systems, World Scientific,

2002, pp. 355–369.

[214] Michael J Wooldridge, An introduction to multiagent systems., John Wiley & Sons,

2009.

[215] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel, Wider or deeper: Re-

visiting the resnet model for visual recognition, Pattern Recognition 90 (2019),

119–133.

[216] Michael Wunder, Michael L Littman, and Monica Babes, Classes of multiagent

q-learning dynamics with epsilon-greedy exploration, Proceedings of the 27th In-

ternational Conference on Machine Learning (ICML-10), Citeseer, 2010, pp. 1167–

1174.

[217] Yinliang Xu, Wei Zhang, Wenxin Liu, and Frank Ferrese, Multiagent-based re-

inforcement learning for optimal reactive power dispatch, IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (2012),

no. 6, 1742–1751.

[218] Logan Yliniemi, Adrian K Agogino, and Kagan Tumer, Multirobot coordination

for space exploration, AI Magazine 35 (2014), no. 4, 61–74.

[219] H Peyton Young, Monotonic solutions of cooperative games, International Journal

of Game Theory 14 (1985), no. 2, 65–72.

[220] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria, Recent

trends in deep learning based natural language processing, ieee Computational in-

telligenCe magazine 13 (2018), no. 3, 55–75.

[221] Yan Zheng, Zhaopeng Meng, Jianye Hao, and Zongzhang Zhang, Weighted dou-

ble deep multiagent reinforcement learning in stochastic cooperative environments,

Pacific Rim International Conference on Artificial Intelligence, 2018, pp. 421–429.

	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Learning in Multi-Agent Systems
	1.2 Motivation & Scope
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Relation to Published Work

	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Finite Markov Decision Processes
	2.3 Q-learning
	2.4 Exploration
	2.5 Deep Learning
	2.6 Deep Q-Learning
	2.7 Policy Gradient Methods
	2.8 Game Theory
	2.8.1 Strategic-Form Games
	2.8.2 Markov Games
	2.8.3 Partially Observable Markov Games
	2.8.4 Repeated Games
	2.8.5 Incomplete Information and Bayesian Games
	2.8.6 Monitoring Conditions in Repeated Games
	2.8.7 Game Types
	2.8.8 Equilibrium Concepts

	2.9 Summary

	3 Multi-Agent Reinforcement Learning
	3.1 Multi-Agent Learning Pathologies
	3.1.1 Miscoordination
	3.1.2 Relative Overgeneralization
	3.1.3 Stochasticity of Rewards and Transitions
	3.1.4 The Alter-Exploration Problem
	3.1.5 The Moving Target Problem
	3.1.6 Deception

	3.2 Independent Learning Approaches
	3.2.1 Decentralized Q-learning
	3.2.2 Distributed Q-learning
	3.2.3 Hysteretic Q-learning
	3.2.4 Frequency Maximum Q-value
	3.2.5 Recursive Frequency Maximum Q-value
	3.2.6 Lenient Multi-Agent Reinforcement Learning
	3.2.7 Comparison

	3.3 Multi-Agent Deep Reinforcement Learning
	3.3.1 Facilitating Cooperation
	3.3.2 Enabling Communication
	3.3.3 Agents Modelling Agents
	3.3.4 Analysis of Emergent Behaviors
	3.3.5 Practical Challenges
	3.3.6 Limitations

	4 Evaluating Independent Reinforcement Learning
	4.1 Desirable Traits of Independent Learners
	4.2 n-Player Strategic-Form Games
	4.2.1 The Penalty Game
	4.2.2 The Climb Game
	4.2.3 The Partially Stochastic Climb Game
	4.2.4 The Fully Stochastic Climb Game

	4.3 Previous Findings
	4.4 Empirical Evaluation
	4.4.1 Decentralized Q-learning
	4.4.2 Frequency Maximum Q-value
	4.4.3 Recursive Frequency Maximum Q-value
	4.4.4 Hysteretic Q-learning
	4.4.5 Lenient Multi-Agent Reinforcement Learning

	4.5 Summary

	5 Towards Improved Lenient Learners
	5.1 Algorithmic Definition
	5.2 Strategic-Form Game Evaluation
	5.3 Learning Complete Policies in Markov Games
	5.4 Addressing Deception in Markov Games
	5.4.1 The Relative Overgeneralization Game
	5.4.2 The Gradient Game

	5.5 Summary

	6 Lenient Multi-Agent Deep Reinforcement Learning
	6.1 Related Work
	6.2 Independent Learner Baseline
	6.3 Lenient Deep Q-Learning
	6.3.1 Clustering Observations using Autoencoders
	6.3.2 Combining Leniency with Deep Q-Network Architectures
	6.3.3 Retroactive Temperature Decay Schedule
	6.3.4 T(o)-Greedy Exploration

	6.4 Scheduled Hysteretic Deep Q-Learning
	6.5 Empirical Evaluation
	6.5.1 CMOTP Extensions
	6.5.2 Setup

	6.6 Deterministic CMOTP Results
	6.6.1 Original CMOTP
	6.6.2 Narrow Passage CMOTP

	6.7 Stochastic CMOTP Results
	6.8 Summary

	7 Q-learning with Negative Update Intervals
	7.1 Q-learning with Negative Update Intervals
	7.1.1 Negative Update Intervals
	7.1.2 Maintaining Negative Update Intervals
	7.1.3 Strategic-Form Game Evaluation
	7.1.4 Robustness Towards Noisy Transitions

	7.2 Temporally-Extending Team Bimatrix Games
	7.3 Deep Q-Learning with Negative Update Intervals
	7.4 The Apprentice Firemen Game
	7.5 Empirical Evaluation
	7.5.1 Implementation Details
	7.5.2 Experiments
	7.5.3 Evaluation Using Phase Plots
	7.5.4 Learning Best Response Policies
	7.5.5 Impact of Stochastic Transitions
	7.5.6 Considerations Regarding LDDQNs

	7.6 Future work
	7.7 Summary

	8 Conclusion
	8.1 Contributions and Answers to the Research Questions
	8.2 Summarising
	8.3 Limitations and Future Work

	A Strategic-Form Game Results
	A.1 Frequency Maximum Q-value
	A.2 Recursive Frequency Maximum Q-value
	A.3 Hysteretic Q-learning
	A.4 Lenient Multi-Agent Reinforcement Learning
	A.5 Synchronized Distributed-Lenient Q-learning
	A.6 Asynchronized Distributed-Lenient Q-learning
	A.7 Q-learning with Negative Update Intervals
	A.8 Results Summary

	B Apprentice Firemen Game Experiment Details & Evaluations
	B.1 Hyperparameters
	B.2 Learning Best Response Policies
	B.3 LDDQN Variable Access Points Experiments

	Bibliography

